Polynomial time algorithms for discrete logarithms and factoring on a quantum computer

  • Peter W. Shor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 877)


  1. 1.
    E. Bernstein and U. Vazirani, “Quantum complexity theory,” in Proc. 25th ACM Symp. on Theory of Computation, pp. 11–20 (1993).Google Scholar
  2. 2.
    A. Berthiaume and G. Brassard. “The quantum challenge to structural complexity theory,” in Proc. 7th IEEE Conference on Structure in Complexity Theory, pp. 132–137 (1992).Google Scholar
  3. 3.
    A. Berthiaume and G. Brassard, “Oracle quantum computing,” in Proc. Workshop on Physics of Computation, pp. 195–199, IEEE Press (1992).Google Scholar
  4. 4.
    D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. Vol. A400, pp. 96–117 (1985).Google Scholar
  5. 5.
    D. Deutsch, “Quantum computational networks,” Proc. R. Soc. Lond. Vol. A425, pp. 73–90 (1989).Google Scholar
  6. 6.
    D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. Vol. A439, pp. 553–558 (1992).Google Scholar
  7. 7.
    R. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, Vol. 21, nos. 6/7, pp. 467–488 (1982).Google Scholar
  8. 8.
    R. Feynman, “Quantum mechanical computers,” Foundations of Physics, Vol. 16, pp. 507–531 (1986). (Originally appeared in Optics News, February 1985.)Google Scholar
  9. 9.
    D. Simon, “On the power of quantum computation,” manuscript (1993).Google Scholar
  10. 10.
    A. Yao, “Quantum circuit complexity,” in Proc. 34th Symp. on Foundations of Computer Science, pp. 352–361, IEEE Press (1993).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Peter W. Shor
    • 1
  1. 1.AT&T Bell LabsMurray HillUSA

Personalised recommendations