Advertisement

Constructing elliptic curves with given group order over large finite fields

  • Georg-Johann Lay
  • Horst G. Zimmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 877)

Abstract

A procedure is developed for constructing elliptic curves with given group order over large finite fields. The generality of the construction allows an arbitrary choice of the parameters involved. For instance, it is possible to specify the finite field, the group order or the class number of the endomorphism ring of the elliptic curve. This is important for various applications in computational number theory and cryptography. Moreover, we give a method that yields all representations of a given integer as a norm in an imaginary quadratic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Cohn: Introduction to the construction of class fields. Number 6 in Cambridge studies in advanced mathematics. Cambridge University Press, 1985.Google Scholar
  2. 2.
    D.A. Cox: Primes of the form x 2 + ny 2. John Wiley & Sons, New York 1989.Google Scholar
  3. 3.
    M. Deuring: Die Klassenkörper der komplexen Multiplikation. Enzyklopädie der mathematischen Wissenschaften mit Einschluß ihrer Anwendungen, Band 1, Heft 10, Teil 2. Teubner, Stuttgart 1958.Google Scholar
  4. 4.
    M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 14 (1941), 197–272.Google Scholar
  5. 5.
    R. Fricke: Lehrbuch der Algebra III. Vieweg Braunschweig, 1928.Google Scholar
  6. 6.
    S. Goldwasser and J. Kilian: Almost all primes can be quickly certified. Proceedings of the 18th Annual ACM Symposium on Theory of Computation (STOC), Berkeley 1986, 316–329.Google Scholar
  7. 7.
    H. Hasse: Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung in Funktionenkörpern. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 10 (1934), 235–348.Google Scholar
  8. 8.
    H. Hasse: Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen. Nachrichten der Akademie der Wissenschaften Göttingen, Mathematisch-Physikalische Klasse 1933, 253–262.Google Scholar
  9. 9.
    D. Husemöller: Elliptic Curves. Graduate Texts in Mathematics 111, Springer, 1986.Google Scholar
  10. 10.
    E. Kaltofen and N. Yui: Explicit construction of the Hilbert class fields of imaginary quadratic fields by integer lattice reduction. Preliminary version 1989.Google Scholar
  11. 11.
    G.-J. Lay: Konstruktion elliptischer Kurven mit vorgegebener Gruppenordnung über endlichen Primkörpern. Diplomarbeit, Saarbrücken 1994.Google Scholar
  12. 12.
    A. Menezes, T. Okamoto and S. Vanstone: Reducing elliptic curve logarithms to logarithms in a finite field. preprint.Google Scholar
  13. 13.
    A. Menezes and S. Vanstone: Isomorphism Classes of Elliptic Curves over Finite Fields. Research Report 90-01, University of Waterloo 1990.Google Scholar
  14. 14.
    A. Menezes and S. Vanstone: Isomorphism Classes of Elliptic Curves over Finite Fields of Characteristic 2. Utilitas Mathematica 38 (1990), 135–153.Google Scholar
  15. 15.
    F. Morain: Building Cyclic Elliptic Curves Modulo Large Primes. Lecture Notes in Computer Science 547 (1991), 328–336.Google Scholar
  16. 16.
    F. Morain: Courbes elliptiques et preuve de primalité. Thése. Lyon 1990.Google Scholar
  17. 17.
    F. Morain: Implementation of the Goldwasser-Kilian-Atkin primality testing algorithm. DRAFT 1988.Google Scholar
  18. 18.
    R. Scherz: Die singulären Werte der Weberschen Funktionen ∫, ∝1, ∝2, γ2, γ3. Journal für die reine und angewandte Mathematik 268–287 (1976), 46–74.Google Scholar
  19. 19.
    R. Schoof: Elliptic curves over finite fields and the computation of square roots modulo p. Mathematics of Computation 44 (1985), 483–494.Google Scholar
  20. 20.
    SIMATH reference manual. E-mail: simath@math.uni-sb.deGoogle Scholar
  21. 21.
    A.M. Spallek: Konstruktion elliptischer Kurven über endlichen Körpern zu gegebener Punktegruppe. Diplomarbeit, Essen 1993.Google Scholar
  22. 22.
    H. Weber: Lehrbuch der Algebra III. Chelsea Publishing Company, New York 1902.Google Scholar
  23. 23.
    N. Yui and D. Zagier: Observation on the singular values of Weber modular functions. Unpublished manuscript (1993).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Georg-Johann Lay
    • 1
  • Horst G. Zimmer
    • 1
  1. 1.Fachbereich 9 MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations