Reducing lattice bases by means of approximations

  • Johannes Buchmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 877)


Let L be a k-dimensional lattice in IRm with basis B = (b1,...,bk). Let A = (a1,...,ak) be a rational approximation to B. Assume that A has rank k and a lattice basis reduction algorithm applied to the columns of A yields a transformation T = (t1,...,tk) ε GL(k, ℤ) such that Atis i λ i (L(A)) where L(A) is the lattice generated by the columns of A, λ i (L(A)) is the i-th successive minimum of that lattice and s i ≥ 1, 1 ≤ ik. For c > 0 we determine which precision of A is necessary to guarantee that Bt i ≤ (1+c)s i λ i (L), 1 ≤ ik. As an application it is shown that Korkine-Zolotaref-reduction and LLL-reduction of a non integer lattice basis can be effected almost as fast as such reductions of an integer lattice basis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BuPo]
    J. Buchmann, M. Pohst: Computing a lattice basis from a system of generating vectors, Proceedings EUROCAL 87, Springer Lecture Notes in Computer Science 378, 54–63, 1989.Google Scholar
  2. [BuKe]
    J. Buchmann, V. Kessler: Computing a reduced lattice basis from a generating system, preprint, 1993.Google Scholar
  3. [LeLeLo]
    A.K. Lenstra, H.W. Lenstra Jr., L. Lovász: Factoring polynomials with rational coefficients, Math. Ann. 261, 515–534, 1982.Google Scholar
  4. [GrLoSchri]
    M. Grötschel, L. Lovász, A. Schrijver: Geometric algorithms and combinatorial optimization, Springer-Verlag Berlin Heidelberg, 1988.Google Scholar
  5. [HaMcCu]
    J.L. Hafner, K.S. McCurley: Asymptotically fast triangularization of matrices over rings, SIAM J. Computation 20, no. 6, 1068–1083, 1991.Google Scholar
  6. [He]
    B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced lattice bases, Theoretical Computer Science 41, 125–139, 1985.Google Scholar
  7. [Po]
    M. Pohst: A modification of the LLL Reduction Algorithm, J. Symbolic Computation, 4, 123–127, 1987.Google Scholar
  8. [LaLeSch]
    J.C. Lagarias, H.W. Lenstra Jr., C.P. Schnorr: Korkine-Zolotarev bases and successive minima of a lattice and its dual lattice, Combinatorica 10, no.4, 333–348, 1990.Google Scholar
  9. [WaGr68]
    B.L. van der Waerden and H. Gross: Studien zur Theorie der Quadratischen Formen, Birkhäuser, Basel, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Johannes Buchmann
    • 1
  1. 1.Fachbereich InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations