Skip to main content

Ginzburg-Landau form description for steps on creep curves

  • Conference paper
  • First Online:
Non-Linearity and Breakdown in Soft Condensed Matter

Part of the book series: Lecture Notes in Physics ((LNP,volume 437))

  • 168 Accesses

Abstract

We consider the model proposed earlier by us for explaining the phenomenon of jumps on creep curves[1]. The model consists of three types of dislocations namely the mobile, the immobile and those with clouds of solute atoms and some transformations between them, leading to a coupled set of nonlinear differential equations for the densities of the dislocations. The model reproduces a large number of experimentally observed features [1,2]. The mathematical mechanism has been shown to be Hopf-bifurcation with respect to several physically relevant drive parameters. The earlier analysis had demonstrated the existence of a pair of complex conjugate slow modes and a fast mode [2]. Here, we present a mathematical analysis of adiabatic elimination of the fast mode and obtaining a Ginzburg-Landau form representation of the order parameter beyond the Hopf bifurcation point upto quintic terms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ananthakrishna and D. Sahoo, J. Phys.,D14 2081 (1981).

    Google Scholar 

  2. M. C. Valsakumar and G. Ananthakrishna, J. Phys.,D16,1055 (1983).

    Google Scholar 

  3. R. J. Deissler and H. R. Brand, Phys. Rev. Lett.72,478 (1994).

    Article  PubMed  Google Scholar 

  4. E. O. Hall, Yield Point Phenomena in Metals and Alloys, (London: Macmillan 1970): J. D. Lubahn and R. P. Felgar, Plasticity and Creep of Metals (New York: John Wiley 1961).

    Google Scholar 

  5. T. L. Da Silveria and S. N. Monteiro, Met. Trans., A10,1795 (1979): L. N. Zagorukuyko, A. I. Osetskiy and U. P. Soldatov, Phys. Met. Metallogr., 43, 156 (1977).

    Google Scholar 

  6. B. J. Brindley and P. J. Worthington, Metall. Reviews., 145, 101 (1970).

    Google Scholar 

  7. K. Chihab, Y. Estrin, L. P. Kubin and J. Vergnol, Scripta. Met., 21, 203 (1987).

    Article  Google Scholar 

  8. S. R. Bodner and A. Rosen, J. Mech. Phys. Solids.,15,63 (1967); P. Penning, Acta Metall.,20, 1169 (1972).

    Article  Google Scholar 

  9. A. H. Cottrell, Phil. Mag., 44, 829 (1953).

    Google Scholar 

  10. See for instance several articles in Non Linear Phenomena in Materials Science Ed. L. P. Kubin and G. Martin, (Switzerland: Trans Tech 1988) and other reference therein; Non Linear Phenomena in Materials Science, Vol II Ed. G. Martin and L.P. Kubin, L. P. and Martin, G (Switzerland:Trans Tech 1992) and other reference therein; See also the articles in the same volume as Ref. 12.

    Google Scholar 

  11. G. Ananthakrishna and M. C. Valsakumar, J. Phys.,D15, L171 (1982) G. Ananthakrishna and M. C. Valsakumar, Phys. Lett., A95, 69 (1983) and G. Ananthakrishna in Ref. 10.

    Google Scholar 

  12. G. Ananthakrishna, Scripta. Met. 29,1185 (1993).

    Google Scholar 

  13. Y. Estrin and L. P. Kubin, J. Mech. Behaviour of Materials, 2, 255 (1989); L. P. Kubin and Y. Estrin, Acta Metall, 38, 697 (1990).

    Google Scholar 

  14. See for example E. Aifantis, in Ref. [10]. See also P. Hahaner and L. P. Kubin in Ref. [10].

    Google Scholar 

  15. P. Hahner, Mater. Sci. and Eng., 164,23, (1993).

    Article  Google Scholar 

  16. Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys., 54, 687 (1975).

    Google Scholar 

  17. H. Mashiyama, A. Ito and T. Ohta, Prog. Theor. Phys., 54, 105 (1975).

    Google Scholar 

  18. P. H. Richter, I. Procaccia and J. Ross, in Advances in Chemical Physics, Vol. 43, Eds. I. Prigogine and S. Rice (Wiley-Interscience, New York1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kamal K. Bardhan Bikas K. Chakrabarti Alex Hansen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Bekele, M., Ananthakrishna, G. (1994). Ginzburg-Landau form description for steps on creep curves. In: Bardhan, K.K., Chakrabarti, B.K., Hansen, A. (eds) Non-Linearity and Breakdown in Soft Condensed Matter. Lecture Notes in Physics, vol 437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58652-0_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-58652-0_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58652-4

  • Online ISBN: 978-3-540-49037-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics