Dealing with qualitative and quantitative temporal information concerning periodic events

  • Paolo Terenziani
Communications Knowledge Representation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 869)


The paper describes a framework for representing and reasoning with periodic events. It proposes a temporal formalism, which deals with both (i) quantitative information concerning the frame of time (e.g., from 1990 until 1993) and the calendar-dates (e.g., on Mondays) in which periodic events take place and (ii) the qualitative relations between periodic events (e.g., Mary works after John). The paper defines the basic operations of inversion, intersection and composition of temporal specifications expressed in the given formalism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Allen, 83]
    J.F. Allen: “Maintaining Knowledge about Temporal Intervals”, Comm ACM 26(11)832–843(1983).Google Scholar
  2. [Baudinet et al., 93]
    M. Baudinet, J. Chomicki, P. Wolper: “Temporal Deductive Databases”, in A. Tansell, R. Snodgrass, J. Clifford, S. Gadia, A. Segev (eds): Temporal Databases: Theory, Design, and Implementation, Benjamin-Cummings, 1993 (in press)Google Scholar
  3. [Chandra et al., 93]
    R. Chandra, A. Segev, M. Stonebraker: “Implementing Calendars and Temporal Rules in Next Generation Databases”, LBL Tech. Report 34229, University of California, Berkeley (1993).Google Scholar
  4. [Chomicki & Imielinsky, 88]
    J. Chomicki, T. Imielinsky: “Temporal Deductive Databases and Infinite Objects”, Proc. 7th ACM Symposium on Principles of Database Systems, 61–73 (1988).Google Scholar
  5. [Kabanza et al., 90]
    F. Kabanza, J.-M. Stevenne, P. Wolper: “Handling Infinite Temporal Data”, Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 392–403 (1990).Google Scholar
  6. [Koomen, 91]
    J. Koomen: “Reasoning about Recurrence”, International Journal of Intelligent Systems 6, 461–496 (1991).Google Scholar
  7. [Ladkin, 86a]
    P. Ladkin: “Primitive and Units for Time Specification”, Proc. AAAI'86, 354–359 (1986).Google Scholar
  8. [Ladkin, 86b]
    P. Ladkin: “Time Representation: A Taxonomy of Interval Relations”, Proc. AAAI'86, 360–366 (1986).Google Scholar
  9. [Leban et al., 86]
    B. Leban, D.D. McDonald, D.R. Forster: “A representation for collections of temporal intervals”, Proc. AAAI'86, 367–371 (1986).Google Scholar
  10. [Ligozat 91]
    G. Ligozat: “On Generalized Interval Calculi”, Proc. AAAI'91, 234–240 (1991).Google Scholar
  11. [Morris et al., 93]
    R.A. Morris, W.D. Shoaff, L. Khatib: “Path Consistency in a Network of Non-convex Intervals”, Proc. IJCAI'93, 655–660 (1993).Google Scholar
  12. [Niezette & Stevenne, 92]
    M. Niezette, J.-M. Stevenne: “An Efficient Symbolic Representation of Periodic Time”, Proc. First International Conference on Information and Knowledge Management, 1992.Google Scholar
  13. [Poesio, 88]
    M. Poesio: “Toward a Hybrid Representation of Time”, Proc. ECAI'88, 247–252 (1988).Google Scholar
  14. [Van Eynde, 87]
    F. Van Eynde: “Iteration, Habituality and Verb Form Semantics”, Proc. 3rd Conference of the European Chapter of the Association for Computational Linguistics, 270–277 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Paolo Terenziani
    • 1
  1. 1.Dipartimento di InformaticaUniversita' di TorinoTorinoItaly

Personalised recommendations