Advertisement

How to combine data abstraction and model refinement: A methodological contribution in MACAO

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 867)

Abstract

This paper deals with methodological aspects of knowledge acquisition and modelling. We focus on how the problem solving can be modelled. Our analysis relies on two experiments where we combined MACAO and KADS to develop knowledge based systems: a technical diagnosis support application and a system that helps to assess debt recovery files. The paper reports these experiments as well as the conclusions drawn. Their evaluation underlines the advantage of combining a detailed analysis of the expert's reasoning with the selection and adaptation of generic models and problem solving methods. Moreover, from this work, we derive guidelines on how to apply practically this combination. We propose to integrate these results in MACAO and improve the methodology by this means.

Key words

Methodology for Knowledge Acquisition Knowledge Engineering Modelling Problem Solving Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKK,93]
    H. Akkermans, B. Wielinga, G. Schreiber, Steps in Constructing Problem Solving Methods, Proceedings of EKAW, Toulouse and Caylus, Sep 1993. N. Aussenac, G. Boy, M. Linster, B. Gaines, J.G. Ganascia and Y. Kodratoff Ed, Lecture Notes in AI 723. Bonn: Springer Verlag.Google Scholar
  2. [AUS,88]
    N. Aussenac, Soubie J.L., Frontin J., A knowledge acquisition tool for expertise transfer, Proceedings of EKAW 88. GMD Studien N 143. pp 8.1–8.12.Google Scholar
  3. [AUS,92]
    N. Aussenac-Gilles, J.P. Krivine, J. Sallantin. Editorial of a special issue of Revue d'Intelligence Artificielle about Knowledge Acquisition, Ed: N. Aussenac-Gilles, J.P. Krivine, J. Sallantin, Paris: Hermès, Vol. 12, 1991/2.Google Scholar
  4. [AUS,93]
    Aussenac-Gilles N., Matta N. Enjeux d'une acquisition des connaissances basée sur l'explicitation d'un modèle plus générique de l'expertise, Actes des 4ème JAC 93, St Raphael, Mars 1993.Google Scholar
  5. [AUS,94a]
    N. Aussenac-Gilles, N. Matta. Making the method of problem solving explicit with MACAO, International Journal on Human-Computer Studies (1994) 40, Special issue: the Sisyphus project, M. Linster Ed., London: Academic Press. pp 193–219.Google Scholar
  6. [AUS,94b]
    Matta N., Aussenac-Gilles N., Problèmes méthodologiques liés à la construction d'un modèle conceptuel avec MACAO, In Actes des 5ème JAC 94, Strasbourg (F), 21–23 Mars 1994. pp N.1–N.14.Google Scholar
  7. [BEN,93a]
    Benjamins R., Problem Solving methods of diagnosis, Thesis Universiteit van Amsterdam, With index ref. ISBN 90-9005877-X, Amsterdam, 1993.Google Scholar
  8. [BEN,93b]
    Benjamins R. Report of work at Aramiihs, Toulouse, June 1993.Google Scholar
  9. [BOO,89]
    Boose J., A survey of knowledge acquisition techniques and tools, Knowledge Acquisition, Vol. 1, N 1, London: Academic Press, pp 3–39.Google Scholar
  10. [BRE,87]
    Breuker J., Wielinga B., Van Someren M., De Hoog R., Schreiber G., De Greef P., Bredeweg B., Wielemaker J., Billault J.P., Model-Driven Knowledge Acquisition: Interpretation Models, Deliverable task A1, Esprit Project 1098 Memo 87, VF Project Knowledge Acquisition in Formal Domains, Amsterdam 1987.Google Scholar
  11. [CHA,86]
    Chandrasekaran B., Generic Tasks in Knowledge based reasoning: High-level building blocks for Expert System Design, IEEE Expert, Autumn 86, pp 23–30.Google Scholar
  12. [DEL,93]
    Delouis I., LISA: Un langage réflexif pour la modélisation du contrôle dans les systèmes à base des connaissances. Application à la planification dans les réseaux électriques, Thèse de l'Université de Paris Sud Centre d'Orsay, Paris, 1993.Google Scholar
  13. [KAR,91]
    W. Karbach, A. Voss, R. Schukey, U. Drouven, MODEL-K: Prototyping at the knowledge level, Proceedings of the first international Conference on Knowledge Modelling and Expertise Transfer, Sophia Antipolis, 1991. IOS Press, Amsterdam.Google Scholar
  14. [KRI,91]
    Krivine J.P., David J.M., L'acquisition des connaissances vue comme un processus de modélisation; méthodes et outils, Intellectica, (12), Paris dec. 1991.Google Scholar
  15. [LIN,92]
    M. Linster, Knowledge Acquisition Based on Explicit Methods of Problem Solving, Ph.D. Dissertation, D 386, Univ. of Kaiserlautern (G), Feb. 1992. 220 p.Google Scholar
  16. [LEP,93]
    P. Lépine, Contribution à la validation pratique de la méthodologie et de l'outil d'acquisition de connaissances expertes MACAO, mémoire d'ingénieur CNAM — Paris, déc 1993.Google Scholar
  17. [LEP,94]
    P. Lépine, N. Aussenac-Gilles, Modélisation de la résolution de problèmes: comparaison expérimentale de KADS et MACAO, Actes des JAC, Strasbourg, Mars 1994.Google Scholar
  18. [LER,94]
    B. Leroux, De l'expertise de modélisation, Actes des 5èmes Journnées Acquisition des Connaissances, Strasbourg, Mars 1994.Google Scholar
  19. [MAR,88]
    Marcus S., Automating Knowledge Acquisition for Expert Systems. Kluwer Academic Publisher. Sandra Marcus Ed. 1988.Google Scholar
  20. [MAT,94]
    Matta N., Modèle Conceptuel: une représentation intermédiaire entre une conduite observée et un code implementé, Paper submitted to “Conférence des Jeunes Chercheurs en Intelligence Artificielle”, Marseilles (F), sept. 1994.Google Scholar
  21. [NEU,93]
    Neubert S., Model Construction in MIKE (Model-Based and Incremental Knowledge Engineering), Proceedings of EKAW, Toulouse and Caylus, Sep 1993. N. Aussenac, G. Boy, M. Linster, B. Gaines, J.G. Ganascia and Y. Kodratoff Ed, Lecture Notes in AI 723. Bonn: Springer Verlag.Google Scholar
  22. [SOL,92]
    C. Soler, Système Expert d'aide à l'intégration Ariane, Ingénieur CNAM — Toulouse, déc 1992.Google Scholar
  23. [STE,92]
    L. Steels, Reutilisability and configuration of applications by non-programmers, Vrei Universiteit of Brussels-AI Lab, memo 92-4.Google Scholar
  24. [VHE,92]
    Van Heijst G., Terpstra P., Wielinga B., Shadbolt N., Using generalised directive models in knowledge acquisition. In Wetter T., Althoff K, Boose J., Gaines B., Linster M., Schmalhofer F., Current trends in Knowledge Acquisition: EKAW 92, Berlin (G). Springer-Verlag. 1992.Google Scholar
  25. [VAL,93]
    Valente A., Lockenhoff C., Organisation as guidance: A library of Assessment Models, Proceedings (complement) of EKAW'93, Toulouse and Caylus, Sept 1993.Google Scholar
  26. [VIC,93]
    Vicat C., Bussac A., Ganascia J.G., CERISE: A cyclic Approach for Knowledge Acquisition, Proceedings of EKAW'93, Toulouse and Caylus, Sept 1993. N. Aussenac, G. Boy, M. Linster, B. Gaines, J.G. Ganascia and Y. Kodratoff Ed, Lecture Notes in AI 723. Bonn: Springer Verlag.Google Scholar
  27. [VOG,88]
    Vogel C., Génie cognitif, Masson, Paris. 1988.Google Scholar
  28. [WIE,92]
    Wielinga B., Schreiber A., Breuker J., KADS: a modelling approach to knowledge acquisition, Knowledge Acquisition, Vol. 4, N∘1, March 1992. pp 5–54.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  1. 1.IRIT-URA 1399 du CNRS - UPSToulouse Cedex

Personalised recommendations