Advertisement

Abstract interpretation using TDGs

  • Laurent Mauborgne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 864)

Abstract

This paper intends to give an efficient way of implementing abstract interpretations. The idea is to use a good symbolic representation of boolean functions, TDGs, a refinement of Binary Decision Diagrams. A general way of using this representation in abstract interpretation is given, in particular we examine the possibility of encoding higher order functions into TDGs. Moreover, this representation is used to design a widening operator based on the size of the objects represented, so that abstract interpretations will not fail due to insufficient memory. This approach is illustrated on strictness analysis of higher-order functions, showing a great increase of efficiency.

keywords

Abstract interpretation BDD Strictness analysis Higher order Practical implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Shannon. A symbolic analysis of relay and switching circuits. Transactions AIEE, 57:305–316. 1938.Google Scholar
  2. 2.
    P. Cousot & R. Cousot. Static determination of dynamic properties of recursive procedures. IFIP Conference on Formal Description of Programming Concepts, St-Adrews, N. B., Canada, pp. 237–277. 1977.Google Scholar
  3. 3.
    S. B. Akers. Binary decision diagrams. IEEE Transactions on computers. 1978.Google Scholar
  4. 4.
    P. Cousot & R. Cousot. Constructive version of Tarki's fixed point theorems. Pacific Journal of Mathematics. 1979.Google Scholar
  5. 5.
    R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans. Comput. C-35, pp. 677–691. 1986.Google Scholar
  6. 6.
    G. L. Burn, C. Hankin & S. Abramsky. Strictness analysis for higher-order functions. Science of computer programming 7, pp. 249–278. 1986.CrossRefGoogle Scholar
  7. 7.
    P. Hudak & J. Young. Higher order strictness analysis in untyped lambda calculus. ACM. 1986.Google Scholar
  8. 8.
    J. P. Billon. Perfect normal forms for discrete programs. Technical report 87039 BULL. 1987.Google Scholar
  9. 9.
    J. C. Madre & J. P. Billon. Proving circuit correctness using formal comparison between expected and extracted behavior. Proc. of the 25th DAC. 1988Google Scholar
  10. 10.
    A. R. Brayton, B. Lin & H. J. Touati. Don't care minimization of multi-level sequential logic network. Proc. of ICCAD'90. 1990.Google Scholar
  11. 11.
    J. C. Madre, C. Berthet & O. Coudert. New ideas in symbolic manipulation of finite state machines. Proc. of ICCAD'90. 1990.Google Scholar
  12. 12.
    J. Schwable & K. L. McMillan. Formal verification of the encore gigamax cache. International Symposium on Shared Memory Multiprocessor. 1991.Google Scholar
  13. 13.
    D. Taubner, E. Enders & T. Filkorn. Generating BDDs for symbolic model checking in ccs. Proc. of CAV'91, pp. 203–213. 1991.Google Scholar
  14. 14.
    H. J. Touati, H. Savoj & R. K. Brayton. Extracting local don't care for network optimization. Proc. of ICCAD'91. 1991.Google Scholar
  15. 15.
    R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Computing Surveys, Vol. 24 pp. 293–318. 1992.CrossRefGoogle Scholar
  16. 16.
    P. Cousot & R. Cousot. Abstract interpretation framework. Journal of logic and computation, pp. 511–547. 1992.Google Scholar
  17. 17.
    Corsini, Musumbu, Rauzy & Le Charlier Efficient Bottom-up Abstract Interpretation of Logic Programs by means of Constraint Solving. PLILP '93. 1993.Google Scholar
  18. 18.
    C. Ratel. Définition et réalisation d'un outil de vérification formelle de programmes LUSTRE. These de l'université de Grenoble 1, chap 11. 1992.Google Scholar
  19. 19.
    G. Baraki. Abstract Interpretation of Polymorphic Higher-Order Functions. Computing Science research report of the University of Glasgow. 1993.Google Scholar
  20. 20.
    A. Ferguson & J. Hughes. Fast Abstract Interpretation Using Sequential Algorithms. Proc. of WSA '93, pp. 45–59. 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Laurent Mauborgne
    • 1
  1. 1.LIENSÉcole Normale SupérieureParis cedex 05France

Personalised recommendations