Estimating the computational cost of logic programs

  • S. K. Debray
  • P. López García
  • M. Hermenegildo
  • N. -W. Lin
Invited Talk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 864)


Information about the computational cost of programs is potentially useful for a variety of purposes, including selecting among different algorithms, guiding program transformations, in granularity control and mapping decisions in parallelizing compilers, and query optimization in deductive databases. Cost analysis of logic programs is complicated by nondeterminism: on the one hand, procedures can return multiple solutions, making it necessary to estimate the number of solutions in order to give nontrivial upper bound cost estimates; on the other hand, the possibility of failure has to be taken into account while estimating lower bounds. Here we discuss techniques to address these problems to some extent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Bondy, “Bounds for the Chromatic Number of a Graph,” Journal of Combinatorial Theory 7, (1969), pp. 96–98.Google Scholar
  2. 2.
    S. K. Debray, and D. S. Warren, “Functional Computations in Logic Programs,” ACM Transactions on Programming Languages and Systems 11, 3 (July 1989), pp. 451–481.CrossRefGoogle Scholar
  3. 3.
    S. K. Debray, and N.-W. Lin, “Cost Analysis of Logic Programs”, ACM Transactions on Programming Languages and Systems, vol. 15 no. 5, Nov. 1993, pp. 826–875.CrossRefGoogle Scholar
  4. 4.
    S. K. Debray and N. Lin, “Static Estimation of Query Sizes in Horn Programs,” Proc. Third International Conference on Database Theory, Paris, France, December 1990, pp. 514–528.Google Scholar
  5. 5.
    S. K. Debray, N.-W. Lin, and M. Hermenegildo, “Task Granularity Analysis in Logic Programs”, Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pp. 174–188. ACM Press, June 1990.Google Scholar
  6. 6.
    S. K. Debray, P. López García, M. Hermenegildo, and N.-W. Lin, “Lower Bound Cost Estimation for Logic Programs”, manuscript, April 1994.Google Scholar
  7. 7.
    Decorte, D. De Schreye, and M. Fabris, “Automatic Inference of Norms: A Missing Link in Automatic Termination Analysis”, Proc. 1993 International Symposium on Logic Programming, 1993, pp. 420–436. MIT Press.Google Scholar
  8. 8.
    N.-W. Lin, Automatic Complexity Analysis of Logic Programs, Ph.D. Dissertation, The University of Arizona, 1993.Google Scholar
  9. 9.
    Ju. V. Matijasevič, “Enumerable Sets are Diophantine”, Doklady Akademii Nauk SSSR, 191 (1970), 279–282 (in Russian; English translation in Soviet Mathematics—Doklady, 11 (1970), 354–357).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • S. K. Debray
    • 1
  • P. López García
    • 2
  • M. Hermenegildo
    • 2
  • N. -W. Lin
    • 3
  1. 1.Department of Computer ScienceThe University of ArizonaTucsonUSA
  2. 2.Department of Artificial IntelligenceUniversidad Politecnica de MadridMadridSpain
  3. 3.Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayiTaiwan, ROC

Personalised recommendations