Advertisement

Dynamic grammatical representations in guided propagation networks

  • Martine Roques
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 862)

Abstract

This paper describes a connectionnist system which is able to build syntactic structures from examples. Inherent robustness to distortions and ability to complete internal representations in the course of processing allow noisy pattern parsing. Structured representations are obtained through extraction of syntactical substructures using different strategies. A comparison with classical grammar representation is presented.

Keywords

associative memory unsupervised learning syntax automatic clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lucas S.M., (1993): New Directions in Grammatical Inference, IEEE Colloquium on Grammatical Inference, Colchester, Univ. of Essex, April 22–23 1993Google Scholar
  2. [2]
    Carbonell J.G., Michalski R.S., Mitchell, T.M., (1983): An Overview of Machine Learning in “Machine Learning, An Artificial Intelligence Approach”, Morgan Kaufman Publishers (Ed.)Google Scholar
  3. [3]
    Miclet L, (1990): Grammatical Inference, Series in Computer Sciences, 7, Syntactic and Structural Pattern Recognition: Theory and Applications, World ScientificGoogle Scholar
  4. [4]
    Das S., Mozer M.C., (1993): A Connectionnist symbol manipulator that induces Rewrite Rules in Context-Free Grammars, IEEE Colloquium on Grammatical Inference, Colchester, Univ. of Essex, April 22–23 1993Google Scholar
  5. [5]
    Lyon C., (1993): Using Neural Networks to Infer Grammatical Structures in Natural Language, IEEE Colloquium on Grammatical Inference, Colchester, Univ. of Essex, April 22–23 1993Google Scholar
  6. [6]
    Béroule D.G., (1987): Guided Propagation inside a Topographic Memory, IEEE First Conference on Neural Networks, San Diego, June 21–24 1987Google Scholar
  7. [7]
    Fletcher P., (1993): Neural Networks for Learning Grammars, IEEE Colloquium on Grammatical Inference, Colchester, Univ. of Essex, April 22–23 1993Google Scholar
  8. [8]
    Sharkey A.J.C., Sharkey N.E., (1993): Connectionnism and Natural Language, IEEE Colloquium on Grammatical Inference, Colchester, Univ. of Essex, April 22–23 1993Google Scholar
  9. [9]
    Roques M., Béroule D.. (1991): Strategies of unsupervised learning for a parallel parsing architecture, IJCNN91, Seattle, July 8–12 1991Google Scholar
  10. [10]
    Escande P., (1992): Reconnaissance de parole par un modèle connexionniste à détection de coÏncidences, Thèse de 3ème cycle, Orsay, Notes et Documents LIMSI nℴ 93-09Google Scholar
  11. [11]
    Béroule D., Von Hoe R., Ruellan, H., (1994): A Guided Propagation Model of Reading, IPO Annual ReportGoogle Scholar
  12. [12]
    Martin J-C., (1994): A connectionnist model using multiplexed oscillations and synchrony to enable dynamic connections, Fourth International Conference on Artificial Neural Networks (ICANN'94), Sorrento, Italy, May 26–29 1994Google Scholar
  13. [13]
    Béroule D.G., (1990): Guided propagation: Current state of theory and applications, NATO ASI Serie, F68, Neurocomputing, F.Fogelman-Soulié & J.Hérault, Springer-Verlag (Ed.), pp 240–260Google Scholar
  14. [14]
    Béroule D.G., (1988): The Never-Ending Learning in “Neural Computers”, NATO ASI Serie, Vol F41, pp 219–230, Springer Verlag (Ed.)Google Scholar
  15. [15]
    Roques M., Béroule D., (1990): Traitement parallèle de séquences lexicales par propagation guidée, 5èmes Journées Neurosciences et Sciences de l'Ingénieur, Aussois, May 7–10 1990Google Scholar
  16. [16]
    Vergne J., (1993): Syntactic properties of natural languages and application to automatic parsing, Sociedad Española para el Procesamiento del Lenguaje Natural (SEPLN93), Grenade, September 1993Google Scholar
  17. [17]
    Roques M., (1992): Exemple d'analyse syntaxique dans une architecture connexionniste pour la communication homme-machine, 6èmes Journées Neurosciences et Sciences de l'Ingénieur, Oléron, May 1992Google Scholar
  18. [18]
    Roques M., (1993): Apprentissage et reconnaissance de structures syntaxiques par une approche connexionniste, Thèse de 3ème cycle, Orsay, Notes et Documents LIMSI nℴ 94-01Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Martine Roques
    • 1
  1. 1.LIMSIOrsay CédexFrance

Personalised recommendations