Advertisement

Simplifying deep embedding: A formalised code generator

  • Ralf Reetz
  • Thomas Kropf
Invited Paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 859)

Abstract

A tool is described, which simplifies the formalisation method “deep embedding” for a system with syntax and semantics in the following way: a formalisation of the syntax described by a context-free grammar is automatically generated and a formalisation of the complete semantics for the given syntax is simplified by automatically generating a formal code generator out of a formalised context-restricted semantics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. de Barros Lucena. Reasoning about petri nets in HOL. In M. Archer, J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, HOL Theorem Proving System and its Applications, pages 384–394, Davis, California, August 1991. IEEE Computer Society, ACM SIGDA, IEEE Computer Society Press.Google Scholar
  2. 2.
    P. Curzon. A verified compiler for a structured assembly language. In M. Archer, J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, HOL Theorem Proving System and its Applications, pages 253–262, Davis, California, August 1991. IEEE Computer Society, ACM SIGDA, IEEE Computer Society Press.Google Scholar
  3. 3.
    E. Gunter. A broader class of trees for recursive type definitions for HOL. In HUG93, HOL User's Group Workshop, Vancouver, Canada, August 1993. Springer Verlag.Google Scholar
  4. 4.
    J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages, and computation. Addison Wesley, 1979.Google Scholar
  5. 5.
    D.F. Martin and R.J. Toal. Case studies in compiler correctness using HOL. In M. Archer, J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, HOL Theorem Proving System and its Applications, pages 242–252, Davis, California, August 1991. IEEE Computer Society, ACM SIGDA, IEEE Computer Society Press.Google Scholar
  6. 6.
    T.F. Melham. A mechanized theory of the π-calculus in HOL. Technical Report 244, University of Cambridge, Computer Laboratory, Cambridge, England, January 1992.Google Scholar
  7. 7.
    R. Reetz and Th. Kropf. Formalisierung eines Flussgraphmodells in Logik hoeherer Ordnung und dessen Anwendung in der Hardware-Verifikation. In D. Monjau, editor, Rechnergestuetzter Entwurf und Architektur mikroelektronischer Systeme, pages 193–202, Oberwiesenthal, Germany, May 1994. Gesellschaft fuer Informatik e.V. (GI).Google Scholar
  8. 8.
    R. Ripken. Generating an intermediate-code generator in a compiler-writing system. In E. Gelenbe and D. Potier, editors, International Computing Symposium, pages 121–127. North Holland, 1975.Google Scholar
  9. 9.
    IEEE standard VHDL language reference manual. Std 1076, IEEE, 1987.Google Scholar
  10. 10.
    C. Zhang, R. Shaw, R. Olsson, K. Levitt, M. Archer, M. Heckman, and G. Benson. Mechanizing a programming logic for the concurrent programming language microSR in HOL. In HUG93, HOL User's Group Workshop, Vancouver, Canada, August 1993. Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ralf Reetz
    • 1
  • Thomas Kropf
    • 1
  1. 1.Institut fuer Rechnerentwurf und FehlertoleranzUniversitaet KarlsruheKarlsruheGermany

Personalised recommendations