Advertisement

Vectorization of the radix r self-sorting FFT

  • Margarita Amor
  • María J. Martín
  • Dora Blanco
  • Oscar G. Plata
  • Francisco F. Rivera
  • Francisco Argüello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 854)

Abstract

In this work we present a study of the vectorization of the fast Fourier transform. The algorithm we have considered is the radix r self-sorting algorithm which does not require additional data reordering stages (digit-reversal) as this process is inherently carried out during the execution of the algorithm. For obtainig the vectorized version of the algorithm we employ a formulation of the FFT in terms of an operator string. Each of the operators represents an operation over the data flow of the algorithm and will have a direct implementation on the vectorial processor. The algorithm thus obtained has been implemented on the Fujitsu VP-2400/10 vector computer, resulting in reduced execution times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, n0.4, (1965) 297–301Google Scholar
  2. 2.
    Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs, NJ (1975)Google Scholar
  3. 3.
    Swartztrauber, P.N.: Multiprocessor FFTs. Parallel Computing, no. 5, (1987) 197–210Google Scholar
  4. 4.
    Cochram, W., Cooley, J.W.: What is the fast Fourier transform?. IEEE Trans. Audio Electroacoust AU-15, no.2, (1967) 45–55Google Scholar
  5. 5.
    Hegland M.: Block algorithms for Fast Fourier Transform on vector and parallel computer. Proc. Int. Conf. Parallel Computing 93, Grenoble, 7–10 September 1993.Google Scholar
  6. 6.
    Stone, H.S.: Parallel processing with the perfect shuffle. IEEE Trans. Comput. c-20, no. 2, (1971) 153–161Google Scholar
  7. 7.
    Parker, D: Notes on shyffle/exchange-type switching networks. IEEE Trans. Comput. C-29, no. 3, (1980) 213–222Google Scholar
  8. 8.
    Argüello, F.: Application Specific Array Processor for Fast Orthogonal Transforms (in Spanish). Ph. D. Dissertation, University of Santiago de Compostela (1992)Google Scholar
  9. 9.
    Zapata, E.L., Argüello, F.: A VLSI constant geometry architecture for the fast Hartley and Fourier tranforms. IEEE Trans. Parallel and Distributed Systems 3 no. 8 (1992) 58–70Google Scholar
  10. 10.
    Miura, K., Uchida, K.: Facom Vector Processor VP-100/VP-200. High Speed Computation. NATO ASI series, 77, J.S. Kowalik Ed., Spriger-Verlag, NY (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Margarita Amor
    • 1
  • María J. Martín
    • 1
  • Dora Blanco
    • 1
  • Oscar G. Plata
    • 1
  • Francisco F. Rivera
    • 1
  • Francisco Argüello
    • 1
  1. 1.Dept. Electrónica y Computación, Facultad de FísicaUniversidad de SantiagoSantiagoSpain

Personalised recommendations