Relative signatures for fault tolerance and their implementation

  • Martin Leu
Session 13: Distributed systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 852)


This paper introduces a new authentication concept for fault tolerance (rather than security) called relative signatures. This new approach provides authentication in an a-priori unknown or dynamically changing set of nodes without causing global administration by avoiding the necessity of having a complete and reliable list of authentication functions available at each participating node. To achieve this considerable gain in flexibility relative signatures require about three times the information redundancy of conventional (absolute) signatures, in principle. However, in a real implementation the signature length can be drastically reduced for most of the authenticated messages to be exchanged by a simple optimization. Three implementation schemes are investigated and compared in terms of efficiency and reliability. Examples of fault-tolerant applications point out the usefulness of this new approach.


digital signatures relative signatures authentication relative authentication fault tolerance distributed systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum 93 B. Baum-Waidner: Byzantine agreement with a minimum number of messages both in the faultless and in the worst case; FTCS-23 digest of papers, IEEE, 1993, pp. 554–563.Google Scholar
  2. CASD 85 F. Cristian, H. Aghili, R. Strong, D. Dolev: Atomic broadcast: from simple message diffusion to byzantine agreement; FTCS-15 digest of papers, IEEE, 1985, pp. 200–206.Google Scholar
  3. DiHe 76 W. Diffie, M. E. Hellman: New directions in cryptography; Transactions on Information Theory, vol. IT-22, IEEE, 1976, pp. 644–654.Google Scholar
  4. DoHo 78 L. Dornhoff, F. Hohn: Applied modern algebra; MacMillan, New York, 1978.Google Scholar
  5. Echt 86a K. Echtle: Fault-masking with reduced redundant communication; FTCS-16 digest of papers, IEEE, 1986, pp. 178–183.Google Scholar
  6. Echt 86b K. Echtle: Fehlermaskierung durch verteilte Systeme; Informatik-Fachberichte 121, Springer, Heidelberg, 1986.Google Scholar
  7. Echt 87 K. Echtle: Fault masking and sequence agreement by a voting protocol with low message number; 6th symposium on reliability in distributed software and database systems, conf. proc., IEEE, 1987, pp. 149–160.Google Scholar
  8. Echt 89 K. Echtle: Distance agreement protocols; FTCS-19 digest of papers, IEEE, 1989, pp. 191–198.Google Scholar
  9. EcLe 94 M. Leu, K. Echtle: Fault-detecting network membership protocols for unknown topologies; To appear in the proceedings of the Fourth International Working Conference on Dependable Computations for Critical Applications DCCA-4, San Diego, 1994.Google Scholar
  10. ElGa 85 T. El-Gamal: A public key cryptosystem and a signature scheme based on discrete logarithms; Transactions on Information Theory, vol. IT-31, IEEE, 1985, pp. 469–472.Google Scholar
  11. GMRi 88 S. Goldwasser, S. Micali, R. L. Rivest: A digital signature scheme secure against adaptive chosen-message attacks; SIAM J. Comput., vol. 17, no. 2, 1988, pp. 281–308.CrossRefGoogle Scholar
  12. LaMe 86 L. Lamport, P. M. Melliar-Smith: Byzantine clock synchronization; Operating systems review, vol. 20, no. 3, acm, 1986, pp. 10–16.Google Scholar
  13. LeWa 83 D. Leisengang, M. Wagner: Signaturanalyse in der Datenverarbeitung; Elektronik, 21.10.1983, pp. 67–72.Google Scholar
  14. LSPe 82 L. Lamport, R. Shostak, M. Pease: The byzantine generals problem; ACM Transactions on programming languages and systems, vol. 4, no. 3, 1982, pp. 382–401.CrossRefGoogle Scholar
  15. McEl 87 R. J. McEliece: Finite fields for computer scientists and engineers; The Kluwer international series in engineering and science; 23, 1987.Google Scholar
  16. Nieu 91 L. J. M. Nieuwenhuis: Fault tolerance through program transformation; Ph. D. thesis, University of Twente, Netherlands, 1991.Google Scholar
  17. Powe 92 D. Powell: Failure mode assumptions and assumption coverage; FTCS-22 digest of papers, IEEE, 1992, pp. 386–395.Google Scholar
  18. RSAd 78 R. L. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and public key cryptosystems; Communications of the acm, vol. 21, no. 2, acm, 1978, pp. 120–126.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Martin Leu
    • 1
  1. 1.Fachbereich InformatikUniversität DortmundGermany

Personalised recommendations