On the size of independent systems of equations in semigroups

  • Juhani Karhumäki
  • Wojciech Plandowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 841)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Albert, J. Lawrence, A proof of Ehrenfeucht's Conjecture, Theoretical Computer Science 41 (1985) 121–123.Google Scholar
  2. 2.
    K. Culik II, J. Karhumäki, System of equations over a free monoid and Ehrenfeucht's Conjecture, Discrete Math. 43 (1983) 139–153.Google Scholar
  3. 3.
    S. Eilenberg, M.P. Schützenberger, Rational sets in commutative monoids, J. of Algebra 13 (1969) 173–191.Google Scholar
  4. 4.
    T. Harju, J. Karhumäki, W. Plandowski, Compactness of systems of equations in semigroups, manuscript, 1994.Google Scholar
  5. 5.
    M.I. Kargapolov, J. Merzlakov, “Theory of Groups”, Nauka, Moscow, 1982.Google Scholar
  6. 6.
    J. Karhumäki, The Ehrenfeucht Conjecture: A compactness claim for finitely generated free semigroups, Theoretical Computer Science 29 (1984) 285–308.Google Scholar
  7. 7.
    J. Karhumäki, On recent trends in formal language theory, in Lect. Notes in Computer Science 267 (1987) 136–162.Google Scholar
  8. 8.
    J. Karhumäki, W. Plandowski, On the defect effect of many identities in free semigroups, manuscript, 1993.Google Scholar
  9. 9.
    J. Karhumäki, W. Plandowski, On the size of independent systems of equations in semigroups, manuscript, 1994.Google Scholar
  10. 10.
    J. Karhumäki, W. Plandowski, W. Rytter, Polynomial size test sets for context-free languages, JCSS (to appear).Google Scholar
  11. 11.
    G. Lallement, “Semigroups and Combinatorial Applications”, John Wiley and Sons, New York, 1979.Google Scholar
  12. 12.
    J. Lawrence, The nonexistence of finite test set for set-equivalence of finite substitutions, Bull. EATCS 28 (1986) 34–37.Google Scholar
  13. 13.
    M. Lothaire, “Combinatorics on Words”, Addison-Wesley Publishing Company, Massachussets, 1983.Google Scholar
  14. 14.
    A. de Luca, A. Restivo, On a generalization of a conjecture of Ehrenfeucht, Bull. EATCS 30 (1986) 84–90.Google Scholar
  15. 15.
    A.A. Muchnik, A.L. Semenov, “Jewels of Formal Languages”, (Russian translation of a book by A. Salomaa), Mir, Moscow, 1986.Google Scholar
  16. 16.
    L. Redei, “The Theory of Finitely Generated Commutative Semi-Groups” Oxford-Edinburgh-New York, 1965.Google Scholar
  17. 17.
    J.-C. Spehner, “Quelques Problemes d'Extension, de Conjugaison et de Presentation des Sous-Monoides d'Un Monoide Libre”, Phd Thesis, Universite Paris VII, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Juhani Karhumäki
    • 1
  • Wojciech Plandowski
    • 2
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.Instytut InformatykiUniwersytet WarszawskiBanacha 2Poland

Personalised recommendations