Advertisement

The combinatorial complexity of a finite string

  • Felix Frayman
  • Valery Kanevsky
  • Walter Kirchherr
Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 841)

Abstract

A function, B(x) is introduced which assigns a real number to a string, x, which is intended to be a measure of the randomness of x. Comparisons are made between B(x) and K(x), the Kolmogorov complexity of x. A O(n3) algorithm for computing B(x) is given, along with brief descriptions of experimental results showing the efficacy of this function in practical situations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Berge, Graphs and Hypergraphs, Dunod, Paris, 1970.Google Scholar
  2. 2.
    T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., 1991.Google Scholar
  3. 3.
    D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, Addison-Wesley, 1983.Google Scholar
  4. 4.
    H. Fleischner, Eulerian Graphs and Related Topics, Volume 1, North Holland, Amsterdam, 1990.Google Scholar
  5. 5.
    H. Fleischner, Eulerian Graphs and Related Topics, Volume 2, North Holland, Amsterdam, 1990.Google Scholar
  6. 6.
    M. Li and P. M. B. Vitányi, “Kolmogorov Complexity and Its Applications”, in: Handbook of Theoretical Computer Science, Volume A (J. van Leeuwen, ed.), Elsevier/MIT Press, Amsterdam/London, 1990, pp. 187–254.Google Scholar
  7. 7.
    M. Li and P. M. B. Vitányi, “Combinatorics and Kolmogorov Complexity”, in: Proceedings of the 6th IEEE Conference on Structure in Complexity Theory, 1991, pp. 154–163.Google Scholar
  8. 8.
    M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, 1993.Google Scholar
  9. 9.
    A. Lempel and J. Ziv, “On the Complexity of Finite Sequences”, IEEE Transactions on Information Theory 22(1) (1976) 75–81.Google Scholar
  10. 10.
    Guy L. Steele Jr., Common Lisp the Language, Digital Press, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Felix Frayman
    • 1
  • Valery Kanevsky
    • 2
  • Walter Kirchherr
    • 3
    • 4
  1. 1.Hewlett-Packard LabratoriesVancouverUSA
  2. 2.Pacific Bell Telephone CompanyWalnut CreekUSA
  3. 3.San Jose State UniversitySan JoseUSA
  4. 4.The Silesian University at OpavaOpavaThe Czech Republic

Personalised recommendations