Some trace monoids where both the Star problem and the Finite Power Property Problem are decidable

Extended abstract
  • Gwénaël Richomme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 841)


We consider here the decidability of the Star Problem in trace monoids (“assuming X is a recognizable set of traces, is X* recognizable ”) and the decidability of the Finite Power Property Problem (“assuming X is a recognizable trace set, does there exist an integer n such that X* = ∪ *i”. We define a family F — of free partially commutative monoids where both the Star Problem and the Finite Power Property Problem are decidable. The family F strictly contains all the already known cases of decidability of the two problems.


recognizability trace monoids Star Problem Finite Power Property Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Math. 85, 1969.Google Scholar
  2. 2.
    R. Cori and Y. Métivier, Recognizable subsets of some partially abelian monoids, Theoret. Comput. Sci. 35, p179–189, 1985.Google Scholar
  3. 3.
    R. Cori and D.Perrin, Automates et commutations partielles, RAIRO, Theoretical Informatics and Applications 19, p 21–32, 1985.Google Scholar
  4. 4.
    S.Eilenberg, Automata, Languages and Machines, Academic Press, New York, 1974.Google Scholar
  5. 5.
    M. Fliess, Matrices de Hankel, J. Math Pures et Appl. 53, p197–224, 1974.Google Scholar
  6. 6.
    M.P. Flé and G. Roucairol, Maximal seriazibility of iterated transactions, Theoret. Comput. Sci. 38, p1–16, 1985.Google Scholar
  7. 7.
    P. Gastin, E. Ochmański, A. Petit, B. Rozoy, Decidability of the Star Problem in A * × {b}*, Inform. Process. Lett. 44, p65–71, 1992.Google Scholar
  8. 8.
    S. Ginsburg and E. Spanier, Semigroups, presburger formulas and languages, Pacific journal of Mathematics 16, p285–296, 1966.Google Scholar
  9. 9.
    S. Ginsburg and E. Spanier, Bounded regular sets, Proceedings of the AMS, vol. 17(5), p 1043–1049, 1966. IGoogle Scholar
  10. 10.
    K. Hashigushi, A decision procedure for the order of regular events, Theoret. Comput. I Sci. 8, p69–72, 1979.Google Scholar
  11. 11.
    K. Hashigushi, Recognizable closures and submonoids of free partially commutative monoids, Theoret. Comput. Sci. 86, p233–241, 1991.Google Scholar
  12. 12.
    M. Lothaire, Combinatories on words, Cambridge University Press (Addison-Wesley), 1983.Google Scholar
  13. 13.
    A. Mazurkiewicz, Concurrent program schemes and their interpretations, Aarhus university, DAIMI rep. PB 78, 1977.Google Scholar
  14. 14.
    Y. Métivier, On recognizable subset of free partially Commutative Monoids, Theoret. Comput. Sci. 58, p201–208, 1988.Google Scholar
  15. 15.
    Y. Métivier and B. Rozoy, On the star operation in free partially commutative monoids, International Journal of Foundations of Computer Science 2, p257–265, 1991.Google Scholar
  16. 16.
    Y. Métivier and G. Richomme, On the star operation and the finite power property in free partially commutative monoid, STACS 94.Google Scholar
  17. 17.
    G. Pighizzini, Recognizable Trace Languages and Asynchronous Automata, PhD Thesis, Università degli studi di Milano, Università degli studi di Torino, February 1993.Google Scholar
  18. 18.
    G. Richomme, Some trace monoids where both the Star Problem and the Finite Power Property Problem are decidable, LaBRI — Université Bordeaux I, Internal report 755-93, December 1993.Google Scholar
  19. 19.
    J. Sakarovitch, The “last” decision problem for rational trace languages, Proceedings of LATIN'92, Lecture Notes in Computer Science 583, p460–473, 1992.Google Scholar
  20. 20.
    A. Salomaa, Jewels of formal languages theory, PITMAN eds.Google Scholar
  21. 21.
    I. Simon, Limited subsets of a free monoid, Proceedings of the 19th FOCS, p143–150, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Gwénaël Richomme
    • 1
  1. 1.LaBRIUniversité Bordeaux ITalenceFrance

Personalised recommendations