A multilingual analyser of medical texts

  • A. -M. Rassinoux
  • R. H. Baud
  • J. -R. Scherrer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 835)


In the European Union, the need for systems which are able to accept multiple European languages is of paramount interest, because language barriers can be a strong impediment for large-scale communication in Europe. The use of analysers able to accept different European languages and convert them into a single representation common to all languages would seem to be the ideal solution. The RECIT system presented in this paper, shows an original approach for analysing sentences, understanding their meaning and storing them into a deep representation, available for future querying. The chosen approach, called proximity processing, takes advantage of the typical situation of a closed domain of knowledge (i.e. medicine) and of the structured form of medical reports (discharge summaries), using proximity rules which combine in an integrated way semantic information as well as syntactic information when needed. From the recognition of meaningful components in free text sentences, a knowledge representation is built in the form of conceptual graphs. In this article, we discuss the relevant features of both proximity processing and the subsequent transformation into a language-independent representation. In particular, we highlight the characteristics that enable our system to be easily extended to other European languages, as well as other application domains when pertinent.


Natural Language Understanding Proximity Processing Conceptual Graphs Multilingual Systems Medical Information Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Chomsky: Syntactic structures. La Hague: Mouton 1957.Google Scholar
  2. 2.
    Y. Wilks: An intelligent Analyser and Understander of English. Communications of the ACM 18, 264–274 (1975).Google Scholar
  3. 3.
    R.C. Schank: Conceptual dependency: a theory of natural language understanding. Cognitive Psychology 3, 552–631 (1972).Google Scholar
  4. 4.
    L. Lesmo, P. Torasso: Weighted Interaction of Syntax and Semantics in Natural Language Analysis. In: A Joshi (ed.): Ninth International Joint Conference on Artificial Intelligence (IJCAI 85). Proceedings. Los Altos, CA: Morgan Kaufmann Publishers 1985, pp. 772–778.Google Scholar
  5. 5.
    S.L. Lytinen: Dynamically combining syntax and semantics in natural language processing. In: American Association for Artificial Intelligence. Fifth national conference on artificial intelligence (AAAI 86). Proceedings. Los Altos, CA: Morgan Kaufmann Publishers 1986, pp. 574–578.Google Scholar
  6. 6.
    N. Sager, C. Friedman, M.S. Lyman: Medical Language Processing: Computer Management of Narrative Data. Reading, MA: Addison-Wesley Publishing Company 1987.Google Scholar
  7. 7.
    M. Schröder: Knowledge Based Analysis of Radiology Reports Using Conceptual Graphs. In: H.D. Pfeiffer (ed.): Seventh Annual Workshop on Conceptual Graphs. Proceedings, 1992, pp. 213–222.Google Scholar
  8. 8.
    M. Schröder: Knowledge-based Processing of Medical Language: A Language Engineering Approach. In: H.-J. Ohlbach (ed.): Sixteenth German Workshop on AI (GWAI 92). Proceedings. Berlin: Springer-Verlag 1992, pp. 221–234.Google Scholar
  9. 9.
    C. Berrut, P. Cinquin: Natural language understanding of medical reports. In: J.-R. Scherrer, R.A. Côté, S.H. Mandil (eds.): Computerized Natural Medical Language Processing for Knowledge Representation. Amsterdam: Elsevier Science Publishers B.V. (North-Holland) 1989, pp. 129–137.Google Scholar
  10. 10.
    R.H. Baud, A.-M. Rassinoux, J.-R. Scherrer: Knowledge Representation of Discharge Summaries. In: M. Stefanelli, A. Hasman, M. Fieschi, J. Talmon (eds.): Artificial Intelligence in Medicine (AIME 91). Proceedings. Berlin: Springer-Verlag 1991, pp. 173–182.Google Scholar
  11. 11.
    R.H. Baud, A.-M. Rassinoux, J.-R. Scherrer: Natural Language Processing and Semantical Representation of Medical Texts. Methods of Information in Medicine 31, 117–125 (1992).PubMedGoogle Scholar
  12. 12.
    A.-M. Rassinoux, R.H. Baud, J.-R. Scherrer: Analysis of Medical Texts using Proximity Processing and Conceptual Graph Representation. AISB Quarterly 92, Special issue on AI in Medicine, 3, 11–15 (1992).Google Scholar
  13. 13.
    O. Steiner: A natural language processing system to analyse medical texts in German. Diplomarbeit: Universität Heidelberg/Fachhochschule Heilbronn, Studiengang Medizinische Informatik, 1994.Google Scholar
  14. 14.
    R. Grishman, R. Kittredge: Analyzing Language in Restricted Domains: Sublanguage Description and Processing. Hillsdale, NJ: Lawrence Erlbaum Associates 1986.Google Scholar
  15. 15.
    J.F. Sowa: Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-Wesley Publishing Company 1984.Google Scholar
  16. 16.
    A.-M. Morel-Guillemaz (Rassinoux), R.H. Baud, J.-R. Scherrer: Proximity Processing of Medical Texts. In: R. O'Moore, S. Bengtsson, J.R. Bryant, J.S. Bryden (eds.): Medical Informatics Europe '90 (MIE 90). Proceedings. Berlin: Springer-Verlag 1990, pp. 625–630.Google Scholar
  17. 17.
    A.-M. Rassinoux, R.H. Baud, J.-R. Scherrer: Conceptual graphs model extension for knowledge representation of medical texts. In: K.C. Lun, P. Degoulet, T.E. Piemme, O. Rienhoff (eds.): MEDINFO 92. Proceedings. Part 2. Amsterdam: Elsevier Science Publishers B.V. (North-Holland) 1992, pp. 1368–1374.Google Scholar
  18. 18.
    N. Sager, M. Lyman, L.J. Tick et al.: Adapting a Medical Language Processor from English to French. In: B. Barber, D. Cao, D. Quin, G. Wagner (eds.): MEDINFO 89. Proceedings. Amsterdam: Elsevier Science Publishers B. V. (North-Holland) 1989, pp. 795–799.Google Scholar
  19. 19.
    E. Marsh, C. Friedman: Transporting the Linguistic String Project System from a Medical to a Navy Domain. ACM Transactions on Office Information Systems 3, 121–140 (1985).Google Scholar
  20. 20.
    C. Lovis, R. Baud, L. Alpay, A.-M. Rassinoux, J. Wagner, J.-R. Scherrer: Needs and constraints in modelling medical knowledge using semantic networks: A medical point of view. In: S. Andreassen, R. Engelbrecht, J. Wyatt (eds): Artificial Intelligence in Medicine (AIME 93). Proceedings. Amsterdam: IOS Press 1993, pp. 360–370.Google Scholar
  21. 21.
    R.H. Baud, C. Lovis, L. Alpay, A.-M. Rassinoux, J.-R. Scherrer, A. Nowlan, A. Rector: Modelling for Natural Language Understanding. In: C. Safran (ed). Seventeenth Annual Symposium on Computer Applications in Medical Care (SCAMC 93). Proceedings. New York: McGraw-Hill 1993, pp. 289–293.Google Scholar
  22. 22.
    J. F. Sowa: Conceptual Graphs. In: SSMI Tutorials for MEDINFO 1992.Google Scholar
  23. 23.
    J.-F. Nogier: Génération automatique de langage et graphes conceptuels. Paris: Hermès, 1991.Google Scholar
  24. 24.
    J.C. Wagner, A.-M. Rassinoux, R.H. Baud, J.-R. Scherrer: Generating Noun Phrases from a Medical Knowledge Representation. To appear in: MIE 94, Lisbon, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • A. -M. Rassinoux
    • 1
  • R. H. Baud
    • 1
  • J. -R. Scherrer
    • 1
  1. 1.Centre d'Informatique HospitalièreGeneva University HospitalGeneva 14Switzerland

Personalised recommendations