A new problem in string searching

  • George Havas
  • Jin Xian Lian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 834)


We describe a substring search problem that arises in group presentation simplification processes. We suggest a two-level searching model: skip and match levels. We give two timestamp algorithms which skip searching parts of the text where there are no matches at all and prove their correctness. At the match level, we consider Harrison signature, Karp-Rabin fingerprint, Bloom filter and automata based matching algorithms and present experimental performance figures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfred V. Aho (1990): Algorithms for finding patterns in strings, in Handbook of theoretical computer science, Volume A (Jan van Leeuwen, ed.), 256–300, Elsevier.Google Scholar
  2. 2.
    Alfred V. Aho and Margaret J. Corasick (1975): Efficient string matching: An aid to bibliographic search, Comm. ACM 18, 333–340.CrossRefGoogle Scholar
  3. 3.
    Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman (1974): The Design and Analysis of Computer Algorithms, Addison-Wesley.Google Scholar
  4. 4.
    Burton H. Bloom (1970): Space/time tradeoffs in hash coding with allowable errors, Comm. ACM 13, 422–426.Google Scholar
  5. 5.
    John Cannon and George Havas (1992): Algorithms for groups, Austral. Comp. J. 24, 51–60.Google Scholar
  6. 6.
    G.H. Gonnet and R. Baeza-Yates (1991): Handbook of algorithms and data structures, Addison-Wesley.Google Scholar
  7. 7.
    Malcolm C. Harrison (1971): Implementation of the substring test by hashing, Comm. ACM 14, 777–779.Google Scholar
  8. 8.
    George Havas (1974): A Reidemeister-Schreier Program, in Proc. Second Internat. Conf. Theory of Groups (M.F. Newman, ed.) [Lecture Notes in Mathematics 372], 347–356, Springer-Verlag.Google Scholar
  9. 9.
    George Havas, P.E. Kenne, J.S. Richardson and E.F.Robertson (1984): A Tietze transformation program, in Computational Group Theory (Michael D. Atkinson, ed.), 67–71, Academic PressGoogle Scholar
  10. 10.
    George Havas and M.F. Newman (1980): Application of computers to questions like those of Burnside, in Burnside Groups (J.L. Mennicke, ed.) [Lecture Notes in Mathematics 806], 211–230, Springer-Verlag.Google Scholar
  11. 11.
    George Havas and Mark Ollila (1993): Application of substring searching methods to group presentations, Australian Computer Science Communications 15, 587–593.MathSciNetGoogle Scholar
  12. 12.
    George Havas, J.S. Richardson and L.S. Sterling (1979): The last of the Fibonacci groups, Proc. Roy. Soc. Edinburgh 83A, 199–203.Google Scholar
  13. 13.
    Richard M. Karp and Michael O. Rabin (1987): Efficient randomized pattern matching algorithms, IBM J. Res. Develop. 31, 249–260.Google Scholar
  14. 14.
    W. Magnus, A. Karrass and D. Solitar (1966): Combinatorial group theory: presentations of groups in terms of generators and relations, Interscience.Google Scholar
  15. 15.
    M.F. Newman (1990): Proving a group infinite, Arch. Math. 54, 209–211.Google Scholar
  16. 16.
    Chris H. Perleberg (1993): Three Longest Substring Algorithms, in First South American Workshop on String Processing, (Ricardo Baeza-Yates and Nivio Ziviani, eds), 135–149, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.Google Scholar
  17. 17.
    E.F. Roberston (1988): Tietze transformations with weighted substring search, J. Symbolic Computation 6, 59–64.Google Scholar
  18. 18.
    M. Schönert et al (1993): GAP — Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany.Google Scholar
  19. 19.
    Charles C. Sims (1994): Computation with finitely presented groups, Cambridge University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • George Havas
    • 1
  • Jin Xian Lian
    • 1
  1. 1.Key Centre for Software Technology Department of Computer ScienceThe University of QueenslandAustralia

Personalised recommendations