Advertisement

On the size of ordered binary decision diagrams representing threshold functions

  • Kazuhisa Hosaka
  • Yasuhiko Takenaga
  • Shuzo Yajima
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 834)

Abstract

An ordered binary decision diagram (OBDD) is a graph representation of a Boolean function. In this paper, the size of ordered binary decision diagrams representing threshold functions is discussed. We consider two cases: the case when an ordering of variables is given and the case when it is adaptively chosen. We show 1) O(2n/2) upper bound for both cases, 2) Ω(2n/2) lower bound for the former case and 3) Ω(n2n/2) lower bound for the latter case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Bryant: “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE Trans. Comput., Vol.C-35, No.8, pp.677–691, (1986).Google Scholar
  2. 2.
    N. Ishiura and S. Yajima: “A Class of Logic Functions Expressible by a Polynomial-Size Binary Decision Diagram,” Proc. Synthesis and Simulation Meeting and International Interchange (SASIMI '90), pp.48–54, (1990).Google Scholar
  3. 3.
    H. Sawada, Y. Takenaga and S. Yajima: “On the Computational Power of Binary Decision Diagrams,” IEICE Trans. Info. & Syst. Vol.E77-D, No.6, (1994).Google Scholar
  4. 4.
    R. E. Bryant: “On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication”, IEEE Trans. Comput., Vol.40, No.2, pp.205–213, (1991).MathSciNetGoogle Scholar
  5. 5.
    H. Sawada: “Computational Power of Binary Decision Diagrams,” Master Thesis, Kyoto University, (1993).Google Scholar
  6. 6.
    H. T. Liaw and C. S. Lin: “On the OBDD-Representation of General Boolean Functions”, IEEE Trans. Comput., Vol.41, No.6, pp.661–664, (1992).Google Scholar
  7. 7.
    S. Yajima and T. Ibaraki: “A Lower Bound of the Number of Threshold Functions”, IEEE Trans. Comput., Vol.EC-14, No.6, pp.926–929, (1965).Google Scholar
  8. 8.
    S. Muroga: “Lower Bounds of the Number of Threshold Functions and a Maximum Weight”, IEEE Trans. Elect. Comput., Vol.EC-14, No.2, pp.136–148, (1965).Google Scholar
  9. 9.
    S. Muroga: Threshold Logic and its Applications, John Wiley & Sons, (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Kazuhisa Hosaka
    • 1
  • Yasuhiko Takenaga
    • 1
  • Shuzo Yajima
    • 1
  1. 1.Department of Information Science, Faculty of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations