Components and projections of curves over finite fields

  • Joachim von zur Gathen
  • Igor Shparlinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 834)


This Extended Abstract studies computational aspects of the basic algebraic and combinatorial properties of algebraic curves over finite fields: the number of points on a curve or a projection, its number of absolutely irreducible components, and the property of being “exceptional”.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Bombieri, On exponential sums in finite fields. Amer. J. Math.88 (1966), 71–105.Google Scholar
  2. E. Bombieri and H. Davenport, On two problems of Mordell. Amer. J. Math.88 (1966), 61–70.Google Scholar
  3. S. D. Cohen, The distribution of polynomials over finite fields. Acta Arith.17 (1970), 255–271.Google Scholar
  4. J. von zur Gathen, Values of polynomials over finite fields. Bull. Austral. Math. Soc.43 (1991), 141–146.Google Scholar
  5. J. von zur Gathen and M. Giesbrecht, Constructing normal bases in finite fields. J. Symb. Comp.10 (1990), 547–570.Google Scholar
  6. J. von zur Gathen, M. Karpinski, and I. E. Shparlinski, Counting curves and their projections. In Proc. 25th ACM Symp. Theory of Computing, 1993, 805–812.Google Scholar
  7. R. Lidl and H. Niederreiter, Finite Fields, vol. 20 of Encyclopedia, of Mathematics and its Applications. Addison-Wesley, Reading MA, 1983.Google Scholar
  8. G. I. Perelmuter, Оценка суммы вдоль алгебраической кривой (Bounds on sums along algebraic curves). Math. Zametki5 (1969), 373–380.Google Scholar
  9. G. I. Perelmuter and I.E. Shparlinski, O распределении нервообразных корнеj в конечных полях (On the distribution of primitive roots in finite fields). Uspekhi Matem. Nauk45(1) (1990), 185–186.Google Scholar
  10. A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen. Computing7 (1971), 281–292.Google Scholar
  11. V. Shoup, Searching for primitive roots in finite fields. Math. Comp.58(197) (1992), 369–380.Google Scholar
  12. I. E. Shparlinsi, On primitive elements in finite fields and on elliptic curves. Math. USSR Sbornik71(1) (1991), 41–50.Google Scholar
  13. I. E. Shparlinski, Computational and algorithmic problems in finite fields, vol. 88 of Mathematics and its applications. Kluwer Academic Publishers, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Igor Shparlinski
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.School of MPCEMacquarie UniversitySydneyAustralia

Personalised recommendations