Edge-coloring and f-coloring for various classes of graphs

  • Xiao Zhou
  • Takao Nishizeki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 834)


In an ordinary edge-coloring of a graph G=(V, E) each color appears at each vertex v ε V at most once. An f-coloring is a generalized coloring in which each color appears at each vertex v ε V at most f(v) times. This paper gives efficient sequential and parallel algorithms which find ordinary edge-colorings and f-colorings for various classes of graphs such as bipartite graphs, planar graphs, graphs of fixed genus, partial k-trees, s-degenerate graphs, graphs of fixed arboricity etc.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Behzad, G. Chartrand, and L. Lesniak-Foster. Graphs and Digraphs. Pindle, Weber & Schmidt, Boston, 1979.Google Scholar
  2. [2]
    M. Chrobak and T. Nishizeki. Improved edge-coloring algorithms for planar graphs. Journal of Algorithms, 11, pp. 102–116, 1990.Google Scholar
  3. [3]
    M. Chrobak and M. Yung. Fast algorithms for edge-coloring planar graphs. Journal of Algorithms, 10, pp. 35–51, 1989.CrossRefGoogle Scholar
  4. [4]
    E. G. Coffman, M. R. Garey Jr, D. S. Johnson, and A. S. LaPaugh. Scheduling file transfers. SIAM J. Comput., 14(3), pp. 744–780, 1985.CrossRefGoogle Scholar
  5. [5]
    R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM J. Comput., 11, pp. 540–546, 1982.CrossRefGoogle Scholar
  6. [6]
    S. Fiorini and R. J. Wilson. Edge-Colourings of Graphs. Pitman, London, 1979.Google Scholar
  7. [7]
    H. N. Gabow and O. Kariv. Algorithms for edge-coloring bipartite graphs. SIAM J. Comput., 11, pp. 117–129, 1982.CrossRefGoogle Scholar
  8. [8]
    H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada. Algorithm for edge-coloring graphs. Technical Report TRECIS-8501, Tohoku Univ., 1985.Google Scholar
  9. [9]
    S. L. Hakimi and O. Kariv. On a generalization of edge-coloring in graphs. Journal of Graph Theory, 10, pp. 139–154, 1986.Google Scholar
  10. [10]
    P. J. Heawood. Map color theorems. Quart. J. Math., 24, pp. 332–338, 1890.Google Scholar
  11. [11]
    I. Holyer. The NP-completeness of edge-colouring. SIAM J. Comput., 10, pp. 718–720, 1981.CrossRefGoogle Scholar
  12. [12]
    P. C. Kainen. Some recent results in topolgical graph theory. In Proceedings of the Captial Conference on Graph Theory and Combinatorics, Springer-Verlag, Lecture Notes in Mathematics, 406, pp. 76–200, 1974.Google Scholar
  13. [13]
    H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edge-coloring problems. Journal of Algorithms, 8, pp. 39–52, 1987.CrossRefGoogle Scholar
  14. [14]
    D. König. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Math. Ann., 77, pp. 453–465, 1916.CrossRefGoogle Scholar
  15. [15]
    G. F. Lev, N. Pippenger, and L. G. Vallant. A fast parallel algorithm for rounting in permutation networks. IEEE Transactions on Computers, C-30, 2, pp. 93–100, 1981.Google Scholar
  16. [16]
    S. Nakano and T. Nishizeki. Scheduling file transfers under port and channel constraints. Int. J. Found. of Comput. Sci., 4(2), pp. 101–115, 1993.CrossRefGoogle Scholar
  17. [17]
    S. Nakano, T. Nishizeki, and N. Saito. On the f-coloring multigraphs. IEEE Transactions on Circuits and Systems, CAS-35, 3, pp. 345–353, 1988.CrossRefGoogle Scholar
  18. [18]
    C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36, pp. 445–450, 1961.Google Scholar
  19. [19]
    T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms. North-Holland, Amsterdam, 1988.Google Scholar
  20. [20]
    G. Szekeres and H. Wilf. An inequality, for the chromatic number of a graph. J. Combinatorial Theory, 4, pp. 1–3, 1968.Google Scholar
  21. [21]
    O. Terada and T. Nishizeki. Approximate algorithms for the edge-coloring of graphs. Trans. Inst. of Electronics and Communication Eng. of Japan, J65-D, 11(4), pp. 1382–1389, 1982.Google Scholar
  22. [22]
    V. G. Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz, 3, pp. 25–30, 1964.Google Scholar
  23. [23]
    X. Zhou, S. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. Submitted to a journal, 1993.Google Scholar
  24. [24]
    X. Zhou, S. Nakano, and T. Nishizeki. A linear algorithm for edge-coloring partial k-trees. In Proc. of the First Europian Symposium on Algorithms, Springer-Verlag, Lect. Notes in Computer Science, 726, pp. 409–418, 1993.Google Scholar
  25. [25]
    X. Zhou, H. Suzuki, and T. Nishizeki. Sequential and parallel algorithms for edge-coloring series-parallel multigraphs. In Proc. of the Third Conference on Integer Programming and Combinatorial Optimization, pp. 129–145, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Xiao Zhou
    • 1
  • Takao Nishizeki
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations