Advertisement

Generalizations of the Griesmer bound

  • Tor Helleseth
  • Torleiv Kløve
  • Øyvind Ytrehus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 829)

Abstract

Various generalizations of the Griesmer bound to minimum support weights are given. The chain condition for codes of lengths at most 2 above the Griesmer bound is discussed.

Keywords

Linear Code Cyclic Code Chain Condition Dual Code Support Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Chung, ”The second generalized Hamming weight of double-error correcting BCH codes and their dual codes”, in: Algebraic Algorithms and Error-Correcting Codes Conf., New Orleans, LA, 1991.Google Scholar
  2. 2.
    H. Chung, ”The second generalized Hamming weight of double-error correcting BCH codes and their dual codes”, in: Lecture Notes in Comp. Science, vol. 539, 118–129, Springer-Verlag 1991.Google Scholar
  3. 3.
    G. Cohen, S. Litsyn, and G. Zémor, ”Upperbounds on generalized distances”, submitted for publication.Google Scholar
  4. 4.
    G. Cohen, L. Huguet, and G. Zémor, ”Bounds on generalized weights”, presented at the first French-Israeli Workshop on Algebratic Coding, Paris, July 1993.Google Scholar
  5. 5.
    I. Duursma, H. Stichtenoth, and C. Voß, ”Generalized Hamming weights for duals of BCH codes and maximal algebraic function fields”, preprint 1993.Google Scholar
  6. 6.
    S. Encheva and T. Kløve, ”Codes satisfying the chain condition”, Reports in informatics, no. 70, Department of Informatics, University of Bergen, October 1992; to appear in IEEE Trans. Info. Theory, vol. IT-40, January 1994.Google Scholar
  7. 7.
    G. L. Feng, K. K. Tzeng, and V. K. Wei, ”On the Generalized Hamming Weights of Several Classes of Cyclic Codes”, IEEE Trans. Info. Theory, vol. IT-38, pp. 1125–1130, 1992.Google Scholar
  8. 8.
    G. D. Forney, ”Dimension/length profiles and trellis complexity of linear block codes”, manuscript, October 1993.Google Scholar
  9. 9.
    G. van der Geer and M. van der Vlugt, ”On generalized Hamming weights of BCH-codes”, Report 92-19, Dept. of Mathematics and Computer Science, Univ. of Amsterdam, 1992.Google Scholar
  10. 10.
    G. van der Geer and M. van der Vlugt, ”The second generalized Hamming weight of the dual codes of double-error correcting binary BCH-codes”, Manuscript, December 1992.Google Scholar
  11. 11.
    J. H. Griesmer, ”A bound for error-correcting codes”, IBM J. Res. Develop., vol. 4, 532–542, 1960.Google Scholar
  12. 12.
    T. Helleseth, T. Kløve, J. Mykkeltveit, ”The weight distribution of irreducible cyclic codes with block lengths n 1((q l−1)/N)”, Discrete Math., vol. 18, pp. 179–211, 1977.Google Scholar
  13. 13.
    T. Helleseth, T. Kløve, Ø. Ytrehus, ”Generalized Hamming weights of linear codes”, IEEE Trans. Inform. Theory, vol. IT-38, pp. 1133–1140, 1992.Google Scholar
  14. 14.
    T. Helleseth, T. Kløve, Ø. Ytrehus, ”Codes and the chain condition”, Proc. Int. workshop on Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria June 22–28, 1992, pp. 88–91.Google Scholar
  15. 15.
    T. Helleseth, T. Kløve, Ø. Ytrehus, ”Excess sequences of codes and the chain condition”, Reports in informatics, no. 65, Department of Informatics, University of Bergen, July 1992.Google Scholar
  16. 16.
    T. Helleseth, T. Kløve, Ø. Ytrehus, ”Codes, weight hierarchies, and chains”, Proc. ICCS/ISITA '92, Singapore, 16–20 November 1992, 608–612.Google Scholar
  17. 17.
    T. Helleseth, T, Kløve, V. Levenshtein, and Ø. Ytrehus, ”Bounds on the minimum support weights”, submitted for publication.Google Scholar
  18. 18.
    T. Helleseth and P. V. Kumar, ”On the weight hierarchy of semiprimitive codes”, submitted for publication.Google Scholar
  19. 19.
    T. Helleseth and P. V. Kumar, ”The weight hierarchy of the Kasami codes”, to appear in Discrete Math..Google Scholar
  20. 20.
    J. W. Hirschfeld, M. A. Tsfasman, and S. G. Vladut, ”The weight hierarchy of higher-dimensional Hermitian codes”, manuscript, August 1992.Google Scholar
  21. 21.
    G. Kabatianski, ”On second generalized Hamming weight”, Proc. Int. workshop on Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria June 22–28, 1992, pp. 98–100.Google Scholar
  22. 22.
    T. Kløve, ”The weight distribution of linear codes over GF(q l) having generator matrix over GF(q), Discrete Mathematics, Vol. 23, pp. 159–168, 1978.Google Scholar
  23. 23.
    T. Kløve, ”Support weight distribution of linear codes”, Discrete Math., vol. 106/107, pp. 311–316, 1992.Google Scholar
  24. 24.
    T. Kløve, ”Minimum support weights of binary codes”, IEEE Trans. Inf. Theory, vol. IT-39, pp. 648–654, 1993.Google Scholar
  25. 25.
    D. Nogin, ”Generalized Hamming weights for codes on multi-dimensional quadrics”, Problems Inform. Transmission, to appear.Google Scholar
  26. 26.
    J. Simonis, ”The effective length of subcodes”, manuscript, 1992.Google Scholar
  27. 27.
    H. Stichtenoth and Conny Voß, ”Generalized Hamming weights of trace codes”, manuscript, 1993.Google Scholar
  28. 28.
    M. van der Vlugt, ”On generalized Hamming weights of Melas codes”, Report, Mathematical Inst., Univ. of Leiden, October 1992.Google Scholar
  29. 29.
    Zhe-xian Wan, ”The weight hierarchies of the projective codes from nondegenerate quadrics”, manuscript, 1992.Google Scholar
  30. 30.
    V. K. Wei, ”Generalized Hamming Weights for Linear Codes”, IEEE Trans. Inform. Theory, vol. IT-37, pp. 1412–1418, 1991.Google Scholar
  31. 31.
    V. K. Wei and K. Yang, ”On the generalized Hamming weights of squaring construction and product codes”, manuscript, 1991.Google Scholar
  32. 32.
    K. Yang, P. V. Kumar, and H. Stichtenoth, ”On the weight hierarchy of geometric Goppa codes”, preprint, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Tor Helleseth
    • 1
  • Torleiv Kløve
    • 1
  • Øyvind Ytrehus
    • 1
  1. 1.Department of InformaticsUniversity of Bergen, HIBBergenNorway

Personalised recommendations