Linear algebra approach to secret sharing schemes

  • G. R. Blakley
  • G. A. Kabatianskii
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 829)


The problem of secret sharing schemes (555) in the case where all sharing functions are linear maps over a finite field is investigated. We evaluate the performance of linear secret sharing schemes using the tools of linear algebra and coding theory. In particular, the nonexistence of an ideal threshold linear 555 for the case where the number of participants is twice as large as the number of possible values of a secret is shown.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MacWilliams, F.J., and Sloane, N.J.A., The theory of error-correcting codes, North-Holland Publishing Company, 1977.Google Scholar
  2. 2.
    Brickell E.F., ”Some ideal secret sharing schemes”, J. Combin. Math. and Combin. Comput., vol. 9, pp. 105–113, 1989.Google Scholar
  3. 3.
    Simmons G.J., ”An introduction to shared secret and/or shared control schemes and their applications”. In Contemporary Cryptology:the Science of Information Integrity, IEEE Press, N.Y., pp.441–497, 1992.Google Scholar
  4. 4.
    Blakley G.R., ”Safeguarding Cryptographic Keys”. In Proc. AFIPS 1979 Natl.Computer Conference, NY, vol. 48, pp. 313–317, 1979.Google Scholar
  5. 5.
    Shamir A., ”How to share a secret”, Communications of ACM, vol. 22, pp. 612–613, 1979.Google Scholar
  6. 6.
    McEliece R.J., Sarwate D.V.,”On secret sharing and Reed-Solomon codes”, Communications of ACM, vol. 24, pp. 583–584, 1981.Google Scholar
  7. 7.
    Massey J.L., ”Minimal codewords and secret sharing”. In Proc. Sixth Joint Swedish-Russian Workshop on Information theory, Molle, Sweden, pp. 276–279, 1993.Google Scholar
  8. 8.
    Bertillson M., ”Linear codes and secret sharing”. Linkoping Studies in Science and Technology. Dissertation, No.299, 1993.Google Scholar
  9. 9.
    Blakley G.R., Kabatianskii G.A., ”Linear algebra approach to secret sharing schemes”. In PreProceedings of Workshop on Information Protection, Moscow, 1993.Google Scholar
  10. 10.
    Capocelli R.M., De Santis A., Gargano L. and Vacaro U.”On the size of shares for secret sharing schemes”. In Lecture Notes in Computer Science, Springer-Verlag, v. 576, pp. 101–113, 1992.Google Scholar
  11. 11.
    Stinson D.R., ”An explication of secret sharing schemes”, Designs, Codes and Cryptography, vol. 2, pp. 357–390, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • G. R. Blakley
    • 1
  • G. A. Kabatianskii
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.Institute of Problems for Information TransmissionMoscowRussia

Personalised recommendations