On periodic (partial) unit memory codes with maximum free distance

  • V. Zyablov
  • V. Sidorenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 829)


In this paper we describe two constructions of q-ary (partial) unit memory codes that achieve upper bounds on the free distance. These constructions are based on Reed-Solomon codes. We show that the increase a of the extended row distance of the proposed codes is larger than that for known ones.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Thommesen and J. Justesen, Bounds on distances and error exponents of unit memory codes, IEEE Trans. Inform. Theory, IT-29(5), 637–649, 1983Google Scholar
  2. 2.
    F. Pollara, R. J. McEliece, and K. Abdel-Ghaffar, Finite-states codes, IEEE Trans. Inform. Theory, IT-34(5), 1083–1089, 1988Google Scholar
  3. 3.
    V. V. Zyablov and V. R. Sidorenko, Bounds on complexity of trellis decoding of linear block codes, Problems of Information Transmission, 29(3), 3–9, Jul.–Sept., 1993 (transl. from Russian)Google Scholar
  4. 4.
    S. A. Popov, Synchronization of separate MDS codewords in presence of noise, Problems of Information Transmission, 21(3), 28–35, 1985 (transl. from Russian)Google Scholar
  5. 5.
    J. Justesen, Bounded distance decoding of unit memory codes, IEEE Trans. Inform. Theory, IT-39(5), 1616–1627, 1993Google Scholar
  6. 6.
    U. K. Sorger, A new construction of partial unit memory codes based on Reed-Solomon Codes, Problems of Information Transmission, submitted 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • V. Zyablov
    • 1
  • V. Sidorenko
    • 1
  1. 1.Institute for Problems of Information TransmissionMoscowRussia

Personalised recommendations