Skip to main content

Cartan's moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes

  • Foundations
  • Conference paper
  • First Online:
Applications of Invariance in Computer Vision (AICV 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 825))

Abstract

This article is a general introduction to Cartan's moving frame method which is elegant, simple, and of an algorithmic nature. We have demonstrated how to use it systematically on three examples relevant to computer vision, curves in the euclidean, affine and projective planes, and derived the corresponding Frenet equations. We have then used these equations to show that the analysis of the deformation of plane curves according to an intrinsic heat equation could be done in a common framework, yielding very similar expressions for the evolution of the three curvature invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luis Alvarez, Frédéric Guichard, Pierre-Louis Lions, and Jean-Michel Morel. Axioms and Fundamental Equations of Image Processing. Technical Report 9231, CEREMADE, 1992.

    Google Scholar 

  2. Elie Cartan. La Théorie des Groupes Finis et Continus et la Géométrie Différentielle traitée par la Méthode du Repère Mobile. Jacques Gabay, 1992. Original edition, Gauthiers-Villars, 1937.

    Google Scholar 

  3. Elie Cartan. Leçons sur la Théorie des Espaces à Connexion Projective. Jacques Gabay, 1992. Original edition, Gauthiers-Villars, 1937.

    Google Scholar 

  4. O.D. Faugeras. Géométrie affine et projective en vision par ordinateur: I le cas des courbes. Technical report, INRIA, 1993. To appear.

    Google Scholar 

  5. Olivier Faugeras. On the evolution of simple curves of the real projective plane. Comptes rendus de l'Académie des Sciences de Paris, Tome 317, Série I, (6):565–570, September 1993. Also INRIA Technical report number 1998.

    Google Scholar 

  6. Olivier Faugeras. On the evolution of simple curves of the real projective plane. Technical Report 1998, INRIA, 1993.

    Google Scholar 

  7. L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever. Scale and the differential structure of images. Image and Vision Computing, 10:376–388, July/August 1992.

    Google Scholar 

  8. M. Gage. An isometric inequality with applications to curve shortening. Duke Mathematical Journal, 50:1225–1229, 1983.

    Google Scholar 

  9. M. Gage. Curve shortening makes convex curves circular. Invent. Math., 76:357–364, 1984.

    Article  Google Scholar 

  10. M. Gage and R.S. Hamilton. The heat equation shrinking convex plane curves. J. of Differential Geometry, 23:69–96, 1986.

    Google Scholar 

  11. M. Grayson. The heat equation shrinks embedded plane curves to round points. J. of Differential Geometry, 26:285–314, 1987.

    Google Scholar 

  12. Benjamin B. Kimia, Allen Tannenbaum, and Steven W. Zucker. On the Evolution of Curves via a Function of Curvature. I. The Classical Case. Journal of Mathematical Analysis and Applications, 163(2):438–458, 1992.

    Google Scholar 

  13. Jan J. Koenderink. Solid Shape. MIT Press, 1990.

    Google Scholar 

  14. J.J. Koenderink and A.J. van Doorn. Dynamic shape. Biological Cybernetics, 53:383–396, 1986.

    PubMed  Google Scholar 

  15. A. Mackworth and F. Mokhtarian. Scale-Based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), January 1986.

    Google Scholar 

  16. Joseph L. Mundy and Andrew Zimmerman, editors. Geometric Invariance in Computer Vision. MIT Press, 1992.

    Google Scholar 

  17. A.H. Salden, B.M. ter Haar Romeny, and M. Viergever. Affine and projective differential geometric invariants of space curves. In Baba Vemuri, editor, Geometric Methods in Computer Vision II, pages 60–74. SPIE, July 1993.

    Google Scholar 

  18. Guillermo Sapiro and Allen Tannenbaum. Affine shortening of Non-Convex Plane Curve. Technical Report EE PUB 845, Technion Israel Institute of Technology-Haifa, August 1992.

    Google Scholar 

  19. Guillermo Sapiro and Allen Tannenbaum. On Affine Plane Curve Evolution. Technical Report EE PUB 821, Technion Israel Institute of Technology-Haifa, February 1992.

    Google Scholar 

  20. Guillermo Sapiro and Allen Tannenbaum. Affine Invariant Scale Space. The International Journal of Computer Vision, 11(1):25–44, August 1993.

    Google Scholar 

  21. Guillermo Sapiro and Allen Tannenbaum. On Invariant Curve Evolution and Image Analysis. Indiana University Journal of Mathematics, 1993. To appear.

    Google Scholar 

  22. Joel Smoller. Shock Waves and Reaction-diffusion Equations. Springer-Verlag, New-York, 1983.

    Google Scholar 

  23. A.P. Witkin. Scale-space filtering. In Proceedings of the International Joint Conference on Artificial Conference, pages 1019–1021, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph L. Mundy Andrew Zisserman David Forsyth

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faugeras, O. (1994). Cartan's moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes. In: Mundy, J.L., Zisserman, A., Forsyth, D. (eds) Applications of Invariance in Computer Vision. AICV 1993. Lecture Notes in Computer Science, vol 825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58240-1_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-58240-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58240-3

  • Online ISBN: 978-3-540-48583-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics