Extensions of initial models and their second-order proof systems

  • Pierre-Yves Schobbens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 816)


Besides explicit axioms, an algebraic specification language contains model-theoretic constraints such as initiality. For proving properties of specifications and refining them to programs, an axiomatization of these constraints is needed; unfortunately, no effective, sound and complete proof system can be constructed for initial models, and a fortiori for their extensions.

In this paper, we construct non-effective second-order axiomatizations for the initiality constraint, and its recently proposed extensions (minimal, quasi-free and surjective models) designed to deal with disjunction and existential quantification.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bidoit and G. Bernot. Proving correctness of algebraically specified software: Modularity and observability issues. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, AMAST'91, pages 139–161. Springer-Verlag, 1992.Google Scholar
  2. 2.
    M. Broy and al. The requirement and design specification language spectrum: an introduction. Technical Report TUM-I9140, Technische Universität München, 1991.Google Scholar
  3. 3.
    R. Burstall and J. Goguen. Semantics of CLEAR, a Specification Language. In D. Bjorner, editor, Abstract software specifications, Proc. 1979 Copenhagen Winter School, volume 86, pages 292–332. Springer, 1980.Google Scholar
  4. 4.
    CIP Language Group. The Munich Project CIP — Vol. I: The Language, volume 183 of Lecture Notes in Computer Science. Springer, 1985.Google Scholar
  5. 5.
    N. Denyer. Pure second-order logic. Notre-Dame Journal of Formal Logic, 33(2):220, 1992.Google Scholar
  6. 6.
    H. Ehrig and B. Mahr. Fundamentals of algebraic specification: Volume 1. Equations and initial semantics. Springer Verlag, 1985.Google Scholar
  7. 7.
    H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints, volume 21 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.Google Scholar
  8. 8.
    A. Schmidt, Die Zulässigkeit der Behandlung mehrsortiger Theorien mittels der üblichen einsortigen Prädikatenlogik, Math. Ann. 123, pages 187–200, 1951.Google Scholar
  9. 9.
    J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and programming. J. ACM, 39(1):95–146, Jan. 1992.Google Scholar
  10. 10.
    S. Kaplan. Positive/negative conditional rewriting. In Conditional Term Rewriting, volume 308 of Lecture Notes in Computer Science. Springer, 1988.Google Scholar
  11. 11.
    D. MacQueen and D. Sannella. Completeness of proof systems for equational specifications. IEEE TSE, SE-11(5), May 1985.Google Scholar
  12. 12.
    P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specifications. In Recent Trends in Data Type Specification, number 332 in Lecture Notes in Computer Science, pages 184–207. Springer-Verlag, 1987.Google Scholar
  13. 13.
    F. Nourani. On induction for programming logics: syntax, semantics, and inductive closure. EATCS Bulletin, 13:51–64, 1981.Google Scholar
  14. 14.
    P. Rathmann and M. Winslett. Circumscribing equality. In Proc. of the 8th Nat. Conf. on Art. Int. (AAAI-89), pages 468–473, 1989.Google Scholar
  15. 15.
    P.-Y. Schobbens. Surjective Circumscription Proc. Dutch/German Workshop on Non-Monotonic Logics, W. Nejdl ed., Aachen, Dec. 1993.Google Scholar
  16. 16.
    P.-Y. Schobbens. Second-Order Proof Systems for Algebraic Specification Languages Proc. 9th Workshop on Specification of Abstract Data Types, F. Orejas ed., to appear.Google Scholar
  17. 17.
    P.-Y. Schobbens. Exceptions for software specification: on the meaning of ”but”. Technical report, Univ. Cath. de Louvain, 1989.Google Scholar
  18. 18.
    M. Wirsing. Structured algebraic specifications: A kernel language. Theoretical Computer Science, 42:123–249, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Pierre-Yves Schobbens
    • 1
  1. 1.Fac. Univ. Notre-Dame de la PaixInstitut d'InformatiqueNamur

Personalised recommendations