New results on binary space partitions in the plane (extended abstract)

  • Mark de Berg
  • Marko de Groot
  • Mark Overmars
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 824)


We prove the existence of linear size binary space partitions for sets of objects in the plane under certain conditions that are often satisfied in practical situations. In particular, we construct linear size binary space partitions for sets of fat objects, for sets of line segments where the ratio between the lengths of the longest and shortest segment is bounded by a constant, and for homothetic objects. For all cases we also show how to turn the existence proofs into efficient algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Ballieux. Motion planning using binary space partition. Report inf/src/93-25, Utrecht University, 1993.Google Scholar
  2. 2.
    B. Chazelle. personal communication, 1993.Google Scholar
  3. 3.
    N. Chin and S. Feiner. Near real time shadow generation using bsp trees. In SIGGRAPH'90, pages 99–106, 1990.Google Scholar
  4. 4.
    F. d'Amore and P. G. Franciosa. On the optimal binary plane partition for sets of isothetic rectangles. In Proc. 4th Canad. Conf. Comput. Geom., pages 1–5, 1992.Google Scholar
  5. 5.
    M. de Berg. Efficient algorithms for ray shooting and hidden surface removal. Ph.D. dissertation, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1992.Google Scholar
  6. 6.
    H. Edelsbrunner. Computing the extreme distances between two convex polygons. J. Algorithms, 6:213–224, 1985.Google Scholar
  7. 7.
    H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori tree structures. Comput. Graph., 14(3):124–133, 1980.Google Scholar
  8. 8.
    B. Naylor, J. Amanatides, and W. Thibault. Merging bsp trees yields polyhedral set operations. In SIGGRAPH'90, pages 115–124, 1990.Google Scholar
  9. 9.
    M. H. Overmars. Range searching in a set of line segments. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 177–185, 1985.Google Scholar
  10. 10.
    M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom., 5:485–503, 1990.Google Scholar
  11. 11.
    M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J. Algorithms, 13:99–113, 1992.MathSciNetGoogle Scholar
  12. 12.
    F. P. Preparata. A new approach to planar point location. SIAM J. Comput., 10:473–482, 1981.Google Scholar
  13. 13.
    F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, New York, NY, 1985.Google Scholar
  14. 14.
    W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space partitioning trees. In Proc. SIGGRAPH'87, pages 153–162, 1987.Google Scholar
  15. 15.
    A. van der Stappen, D. Halperin, and M. Overmars. The complexity of the free space for a robot moving amidst fat obstacles. Computational Geometry: Theory and Applications, 3:353–373, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Mark de Berg
    • 1
  • Marko de Groot
    • 1
  • Mark Overmars
    • 1
  1. 1.Dept. of Computer ScienceUtrecht UniversityTB UtrechtThe Netherlands

Personalised recommendations