Trapezoid graphs and generalizations, geometry and algorithms

  • Stefan Felsner
  • Rudolf Müller
  • Lorenz Wernisch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 824)


Trapezoid graphs are a class of cocomparability graphs containing interval graphs and permutation graphs as subclasses. They were introduced by Dagan, Golumbic and Pinter [DGP]. They propose an O(n2) algorithm for chromatic number and a less efficient algorithm for maximum clique on trapezoid graphs. Based on a geometric representation of trapezoid graphs by boxes in the plane we design optimal, i.e., O(n log n), algorithms for chromatic number, weighted independent set, clique cover and maximum weighted clique on such graphs. We generalize trapezoid graphs to so called k-trapezoidal graphs. The ideas behind the clique cover and weighted independent set algorithms for trapezoid graphs carry over to higher dimensions. This leads to O(n logk−1n) algorithms for k-trapezoidal graphs. We also propose a new class of graphs called circle trapezoid graphs. This class contains trapezoid graphs, circle graphs and circular-arc graphs as subclasses. We show that clique and independent set problems for circle trapezoid graphs are still polynomially solvable. The algorithms solving these two problems require algorithms for trapezoid graphs as subroutines.

Mathematics Subject Classification (1991)

06A07 05C85 68R10 

Key words

Algorithms partially ordered sets order dimension trapezoid graphs circle graphs circular-arc graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABMP]
    H. Alt, N. Blum, K. Mehlhorn and M. Paul, Computing a maximum cardinality matching in a bipartite graph in time O(n 1.5(m/logn).5), Inf. Proc. Letters 37 (1991), 237–240.Google Scholar
  2. [CLR]
    T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms, The MIT Press, 1989.Google Scholar
  3. [DGP]
    I. Dagan, M.C. Golumbic and R.Y. Pinter, Trapezoid Graphs and their Coloring, Discr. Appl. Math. 21 (1988), 35–46.Google Scholar
  4. [Fre]
    M.L. Fredman, On Computing the Length of Longest Increasing Subsequences, Discr. Math. 11 (1975), 29–35.Google Scholar
  5. [Gav]
    F. Gavril, Algorithms for a Maximum Clique and a Maximum Independent Set of a Circle Graph, Networks 3 (1973), 361–273.Google Scholar
  6. [Gol]
    M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.Google Scholar
  7. [Hel]
    E. Helly, Über die Menge konvexer Körper mit gemeinsamen Punkten, Jahresb. d. Dt. Mathem. Ver. 32 (1923).Google Scholar
  8. [McSp]
    R. McConnel and J. Spinrad, Linear-Time Modular Decomposition and Efficient Transitive Orientation of Undirected Graphs., Proc. 5. Annual Symp. on Discr. Alg. (1994).Google Scholar
  9. [PaSt]
    C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, 1983.Google Scholar
  10. [vEB]
    P. van Embde Boas, Preserving order in a forest in less than logarithmic time and linear space„ Inf. Proc. Letters 6 (1977), 80–82.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Stefan Felsner
    • 1
    • 2
  • Rudolf Müller
    • 3
  • Lorenz Wernisch
    • 4
  1. 1.Bell Communications ResearchMorristownUSA
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany
  3. 3.Fachbereich MathematikTechnische Universität BerlinBerlinGermany
  4. 4.Inst. für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations