Advertisement

A kind of achievement by parts method

  • Ph. Mathieu
  • J. P. Delahaye
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 822)

Abstract

How to add new rules to a knowledge base Kb1 to obtain a new knowledge base Kb2 for which forward chaining on Kb2 with any extensional knowledge base Ekb gives all the two-valued consequence literals of Kb1Ekb. We have shown in a previous paper that there exists such a method that we call Achievement. if (Kb1Ekb) ⊨ L then L ∃ FwCh(Kb2Ekb) with Kb2 = Ach(Kb1)

Unfortunately these achievement methods have a great complexity in time and space which depends on the size of the initial knowledge base. Thus we try to achieve knowledge bases by parts to have a weaker complexity. Kb = Kb1 ∪ ... ∪ Kb n , Ach(Kb) = Ach(Kb1) ∪ ... ∪ Ach(Kb n )

The aim of this paper is to give several methods to split knowledge bases in order to apply achievement by parts methods.

Topics

Logic of Knowledge Deduction Complete computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.L.Chang and R.C.T. Lee.-Symbolic Logic and Mechanical Theorem Proving. Academic Press, inc. 1973.Google Scholar
  2. 2.
    S. Cook.-The complexity of theorem-proving procedures. Proc. 3rd ann. ACM symp. on theory of computing. ACM New-York pp 151–158, 1971.Google Scholar
  3. 3.
    J.P. Delahaye.-Forward chaining and computation of two-valued and three-valued models. 7th Int. Conf. on Expert Systems and Applications, Avignon 87. p1341–1360.Google Scholar
  4. 4.
    M. Davis, H. Putnam.-A Computing Procedure for Quantification Theory. JACM 7, p201–215, 1960.Google Scholar
  5. 5.
    K. Kunen.-Negation in Logic Programming. Journal of Logic Programming, vol 4, 1987, p289–308.Google Scholar
  6. 6.
    P. Mathieu et J.P. Delahaye.-The logical Compilation of Knowledge Bases. Proceedings of JELIA 90, Amsterdam, Lecture Notes In AI, 478, Springer Verlag, pp386–398.Google Scholar
  7. 7.
    P. Mathieu et J.P. Delahaye.-For which bases forward chaining is sufficient ? Proceedings of Cognitiva 90, Madrid, 1990, pp 699–702.Google Scholar
  8. 8.
    P. Mathieu.-La notion d'achèvement et ses applications aux interpreteurs de regles. Ph.D. Thesis, Univ. Lille1, 1991.Google Scholar
  9. 9.
    P. Siegel.-Representation et utilisation de la connaissance en calcul propositionnel. These d'Etat-GIA Marseille Luminy, 1987.Google Scholar
  10. 10.
    J.C. Shepherdson.-Negation in logic programming. Foundations of deductive databases and logic programming (J.Minker ed), Morgan Kaufmann, 1988, p19–88.Google Scholar
  11. 11.
    R. Turner.-Logics for Artificial Intelligence. Ellis Horwood, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ph. Mathieu
    • 1
  • J. P. Delahaye
    • 1
  1. 1.Laboratoire d'Informatique Fondamentale de LilleU.A. 369 du C.N.R.S., Université de Lille IVilleneuve d'Ascq CedexFrance

Personalised recommendations