On the cutting edge of relativization: The resource bounded injury method

  • Harry Buhrman
  • Leen Torenvliet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 820)


In this paper we construct an oracle A such that NEXP A P ε A . For the construction of this oracle we present a new variation on the finite injury priority method that we call the resource bounded injury method. As a corollary we obtain an oracle A such that Sewelsons conjecture fails, i.e. EXP A =NEXP A EXP NP A , via a direct construction that does not make use of information theoretical lower bounds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AIV93]
    S. Arora, R. Impagliazzo, and U. Vazirani. On the role of the Cook-Levin theorem in complexity theory. manuscript, 1193.Google Scholar
  2. [BDG88]
    J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Springer-Verlag, 1988.Google Scholar
  3. [BG81]
    C. Bennett and J. Gill. Relative to a random oracle A, PA≠NPA ≠ Co-NPA with probability 1. SIAM J. Comput., 10(1):96–113, February 1981.Google Scholar
  4. [BH91]
    S.R. Buss and L. Hay. On truth-table reducibility to SAT. Information and Computation, 90(2):86–102, February 1991.Google Scholar
  5. [Dek77]
    M.I. Dekhtyar. On the relation of deterministic and nondeterministic complexity classes. In Proceedings Mathematical Foundations of Computer Science, Lecture Notes in Computer Science vol. 45, pages 282–287, Berlin, 1977. Springer-Verlag.Google Scholar
  6. [FFK92]
    S. Fenner, L. Fortnow, and S.A. Kurtz. The isomorphism conjecture holds relative to an oracle. In Proc. 33rd IEEE Symposium Foundations of Computer Science, pages 30–39, 1992.Google Scholar
  7. [FLZ92]
    B. Fu, H. Li, and Y. Zhong. Some properties of exponential time complexity classes. In Proc. Structure in Complexity Theory seventh annual conference, pages 50–57. IEEE computer society press, 1992.Google Scholar
  8. [Fri57]
    R.M. Friedberg. Two recursively enumerable sets of incomparable degrees of unsolvability. In Proc. Nat. Acad. Sci., volume 43, pages 236–238, 1957.Google Scholar
  9. [Hel84]
    Hans Heller. On relativized polynomial and exponential computations. SIAM J. Comput, 13(4):717–725, november 1984.Google Scholar
  10. [Hel86]
    Hans Heller. On relativized exponential and probabilistic complexity classes. Information and Control., 71(3):231–243, December 1986.Google Scholar
  11. [Hem89]
    L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and System Sciences, 39(3):299–322, 1989.Google Scholar
  12. [HIS85]
    J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65(2/3):158–181, May/June 1985.Google Scholar
  13. [HS65]
    J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Trans. Amer. Math. Soc., 117:285–306, 1965.Google Scholar
  14. [IT89]
    R. Impagliazzo and G. Tardos. Decision versus search problems in superpolynomial time. In Proc. 30th IEEE Symposium on Foundations of Computer Science, pages 222–227, 1989.Google Scholar
  15. [Ko89]
    K. Ko. Distinguishing conjunctive and disjunctive reducibilities by sparse sets. Information and Computation, 81:62–87, 1989.Google Scholar
  16. [Kur83]
    Stuart A. Kurtz. On the random oracle hypothesis. Information and Control, 57(1):40–47, April 1983.Google Scholar
  17. [Moc94]
    S. Mocas. Using bounded query classes to separate classes in the exponential time hierarchy. To appear in proceedings of the 9th structure in complexity theory conference, 1994.Google Scholar
  18. [Muc56]
    A.A. Muchnik. On the unsolvability of the problem of reducibility in the theory of algorithms. Dokl. Acad. Nauk SSSR, 108:194–197, 1956.Google Scholar
  19. [Sew83]
    V. Sewelson. A study of the Structure of NP. PhD thesis, Cornell University, Ithaca. New York 14853, August 1983. TR83-575.Google Scholar
  20. [SPM78]
    J.I. Seiferas, M.J. Fischer, and A.R. Meyer. Separating nondeterministic time complexity classes. J. ACM, 25(1):146–167, January 1978.Google Scholar
  21. [Sha92]
    A. Shamir. IP=PSPACE. Journal of the ACM, 4:869–877, October 1992.Google Scholar
  22. [Soa87]
    Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer-Verlag, 1987.Google Scholar
  23. [Sto76]
    L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1976.Google Scholar
  24. [TV86]
    L. Torenvliet and P. Van Emde Boas. Diagonalisation methods in a polynomial setting. In Proc. Structure in Complexity Theory, Lecture Notes in Computer Science vol. 223, pages 331–334, Berlin, 1986. Springer-Verlag.Google Scholar
  25. [Zák83]
    S. Zák. A Turing machine hierarchy. Theoretical Computer Science, 26:327–333, 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Harry Buhrman
    • 1
  • Leen Torenvliet
    • 2
  1. 1.Dept. Llenguatges i Sist. InformàticsUniv. Polytècnica de CatalunyaBarcelonaSpain
  2. 2.Dept. of Math. and Comp. ScienceUniversity of AmsterdamTV AmsterdamThe Netherlands

Personalised recommendations