Advertisement

LeanTAP: Lean tableau-based theorem proving

Extended abstract
  • Bernhard Beckert
  • Joachim Posegga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 814)

Abstract

“prove((E,F),A,B,C,D):- !, prove(E,[F|A],B,C,D). prove((E;F),A,B,C,D):- !, prove(E,A,B,C,D), prove(F,A,B,C,D). prove(all(H,I),A,B,C,D):- !, +length(C,D), copy_term((H,I,C), (G,F,C)), append(A, [all(H,I)],E), prove(F,E,B, [G|C],D). prove(A,_,[C|D],_,_):-((A= -(B); -(A)=B)) → (unify(B,C); prove(A,[],D,_,_)). prove(A,[E|F],B,C,D):- prove(E,F, [A|B],C,D).” implements a first-order theorem prover based on free-variable semantic tableaux. It is complete, sound, and efficient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Beckert, S. Gerberding, R. Hähnle, and W. Kernig. The tableau-based theorem prover 3TAP for multiple-valued logics. In Proceedings, CADE 11, Albany/NY, LNCS. Springer, 1992.Google Scholar
  2. 2.
    B. Beckert and R. Hähnle. An improved method for adding equality to free variable semantic tableaux. In Proceedings, CADE 11, Albany/NY, LNCS. Springer, 1992.Google Scholar
  3. 3.
    B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized δ-rule in free variable semantic tableaux. In Proceedings, 3rd Kurt Gödel Colloquium, Brno, Czech Republic, LNCS. Springer, 1993.Google Scholar
  4. 4.
    B. Beckert and J. Posegga. leanTAP: Lean tableau-based theorem proving. To appear (available upon request from the authors), 1994.Google Scholar
  5. 5.
    E. Eder. Relative Complexities of First-Order Calculi. Artificial Intelligence. Vieweg Verlag, 1992.Google Scholar
  6. 6.
    M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990.Google Scholar
  7. 7.
    R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Prolog. In Proceedings, CADE 9, Argonne, LNCS. Springer, 1988.Google Scholar
  8. 8.
    F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of Automated Reasoning, 2:191–216, 1986.Google Scholar
  9. 9.
    J. Posegga. Compiling proof search in semantic tableaux. In Proceedings, ISMIS 7, Trondheim, Norway, LNCS. Springer, 1993.Google Scholar
  10. 10.
    M. E. Stickel. A prolog technology theorem prover. In Proceedings, CADE 9, Argonne, LNCS. Springer, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Bernhard Beckert
    • 1
  • Joachim Posegga
    • 1
  1. 1.Institut für Logik, Komplexität und DeduktionssystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations