On intuitionistic query answering in description bases

  • Véronique Royer
  • J. Joachim Quantz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 814)


In this paper we present a weak and a strong intuitionistic calculus for query answering in Description Logics (DL). Given the standard model-theoretic semantics for DL, a complete query-answering calculus has to perform complex case analyses to cope with implicit disjunctions stemming from some of the concept-forming operators in DL. To avoid this complexity we propose an intuitionistic approach to query answering based on the Sequent-Calculus-style axiomatization of DL we have developed in [20] and [21]. By taking into account only the intuitionistic inference schemata of this axiomatization, we obtain a strong intuitionistic query-answering calculus. An additional restriction to reasoning about explicit objects allows a further simplification of the proof theory and yields a weak intuitionistic calculus.

We prove completeness of these calculi wrt axiomatic semantics based on the Intuitionistic Sequent Calculus. For the weak calculus we also give a least fixed point semantics as known from Deductive Databases and Logic Programming.


Description Logics Intuitionistic Sequent Calculus Least Fixed Point Semantics Query Answering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Apt, H. Blair, A. Walker, “Towards a Theory of Declarative Knowledge”, in Workshop on Foundations of Deductive Databases and Logic Programming, Washington, 1986Google Scholar
  2. 2.
    F. Baader, B. Hollunder, “Embedding Defaults into Terminological Knowledge Representation Formalisms”, in KR-92, 306–317Google Scholar
  3. 3.
    F. Bancilhon, D. Maier, Y. Sagic, J. Ullman, “Magic Sets and other Strange Ways of Implementing Logic Programs”, in Principles of Database Systems (PODS-86), 1–15, 1986Google Scholar
  4. 4.
    RJ. Brachman, J.G. Schmolze, “An Overview of the KL-ONE Knowledge Representation System” Cognitive Science 9, 171–216, 1985Google Scholar
  5. 5.
    R. Brachman, D.L. McGuiness, P.E. Patel-Schneider, L. Alperin Resnick, A. Borgida, “Living with CLASSIC: When and How to Use a KL-ONE-like Language”, in, J. Sowa (Ed.), Principles of Semantic Networks: Explorations in the Representation of Knowledge, San Mateo: Morgan Kaufmann, 401–456, 1991Google Scholar
  6. 6.
    F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, “Tractable Concept Languages” UCAI-91, 458–463Google Scholar
  7. 7.
    F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, W. Nutt, “Adding Epistemic Operators to Concept Languages”, in KR-92, 342–353Google Scholar
  8. 8.
    J. Gallier, Logic for Computer Science; Foundations of Automatic Theorem Proving, New York: Harper and Row, 1986Google Scholar
  9. 9.
    J.Y. Girard, “Linear Logic”, Theoretical Computer Science, 50, 1987Google Scholar
  10. 10.
    J.Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge: Cambridge University Press, 1989Google Scholar
  11. 11.
    T. Hoppe, C. Kindermann, J.J. Quantz, A. Schmiedel, M. Fischer, back V5 Tutorial & Manual, KIT Report 100, Technische Universität Berlin. 1993Google Scholar
  12. 12.
    J.M. Kerisit, R. Lescoeur, J. Rohmer, “The Alexander Method: a Technique for the Processing of Recursive Axioms in Deductive Databases”, New Generation Computing 3(4), 1986Google Scholar
  13. 13.
    H.J. Levesque, “Foundations of a Functional Approach to Knowledge Representation”, Artificial Intelligence 23, 155–212, 1984Google Scholar
  14. 14.
    J.W. Loyd, Foundations of Logic Programming, Berlin: Springer, 1987Google Scholar
  15. 15.
    B. Nebel, Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in Artificial Intelligence 422, Berlin: Springer, 1990Google Scholar
  16. 16.
    T. Przyymusinski, “On the Declarative and Procedural Semantics of Logic Programs”, Journal of Automated Reasoning 5, 167–205, 1989Google Scholar
  17. 17.
    J.J. Quantz, G. Dunker, V. Royer, “Flexible Inference Strategies for DL Systems”, to appear in International Workshop on Description Logics, Bonn, 1994Google Scholar
  18. 18.
    J.J. Quantz, B. Schmitz, “Knowledge-Based Disambiguation for Machine Translation”, Minds and Machines 4, 39–57, 1994Google Scholar
  19. 19.
    R. Reiter, “On Asking What a Database Knows”, in J.W. Loyd (Ed.), Computational Logic, Berlin: Springer, 96–113, 1990Google Scholar
  20. 20.
    V. Royer, J.J. Quantz, “Deriving Inference Rules for Terminological Logics”, in, D. Pearce, G. Wagner (eds), Logics in AI, Proceedings of JELIA '92, Berlin: Springer, 84–105, 1992Google Scholar
  21. 21.
    V. Royer, J.J. Quantz, Deriving Inference Rules for Description Logics: a Rewriting Approach into Sequent Calculi, KIT Report 112, Technische Universität Berlin, 1993Google Scholar
  22. 22.
    J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, Cambridge: MIT Press, 1977Google Scholar
  23. 23.
    G. Sundholm, “Systems of Deduction”, in D. Gabbay, F. Guenthner (eds), Handbook of Philosophical Logic, VoL I, Dordrecht: Reidel, 133–188, 1983Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Véronique Royer
    • 1
  • J. Joachim Quantz
    • 2
  1. 1.ONERA DES/SIAChatillon Cedex
  2. 2.Technische Universität Berlin, KIT-VM11, FR 5-12Berlin

Personalised recommendations