Implementation of weighted place/transition nets based on Linear Enabling Functions

  • J. L. Briz
  • J. M. Colom
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 815)


Petri Nets should be implemented in an efficient and reliable way, specially when they are going to be used for critical problems, like that of giving support to Discrete Event Systems Simulation, whichever sequential or parallel strategies are adopted. One of the critical points while implementing a Petri Net, is that of determining whether a transition is enabled. In this contribution we classify transitions in several classes. The enabling of a transition is characterized by means of a Linear Enabling Function (LEF), that depends on the class. For some classes a transformation must be applied, preserving the behavior of the net. We show how LEFs can be applied to build a Simulation Engine that uses as data structure a DES described in terms of a Timed Petri Net, taking benefit of the properties of LEFs.


Simulation of Weighted Place-Transition Systems Timed Petri Nets Linear Enabling Functions Structure and Behavior of nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HH Ammar and Su Deng. Time Warp Simulation of Stochastic Petri Nets. In Proc. of the 4th Int. Workshop on Petri Nets and Performance Models, pages 186–195, Melbourne, Australia, December 1901. IEEE-CS Press.Google Scholar
  2. 2.
    J Banks and JS Carson. Discrete-Event System Simulation. Prentice Hall, Inc., 1984.Google Scholar
  3. 3.
    F Bréant. Rapid prototyping from petri net on a loosely coupled parallel architecture. In Transputer applications 1991, pages 28–30, Glasgow, Scotland (UK), August 1991.Google Scholar
  4. 4.
    G Chiola, S Donatelli, and G Franceschinis. Priorities, Inhibitor Arcs and Concurrency in P/T nets. In Proc. of the 12th Int. Conference in Application and Theory of Petri Nets, pages 182–205, Aarhus, June 1991.Google Scholar
  5. 5.
    G Chiola and A Ferscha. Distributed Simulation of Timed Petri Nets: Exploiting the Net Structure to Obtain Efficiency. In Marco Ajmone Marsan, editor, Proc. of the 14th Int. Conf. on App. and Theory of Petri Nets, pages 186–195, Melbourne, Australia, December 1993. Springer-Verlag.Google Scholar
  6. 6.
    D Chocron. Un Système de Programmation par RdP de Controleurs Industriels. Master's thesis, Montreal, Canada, 1980.Google Scholar
  7. 7.
    JM Colom, M Silva, and JL Villarroel. On software implementation of Petri Nets and Colored Petri Nets using high level concurrent languages. In Proc. of 7th European Workshop on Application and Theory of Petri nets, pages 207–241, Oxford, England, January 1986.Google Scholar
  8. 8.
    RM Fujimoto. Parallel Discrete Event Simulation. Communications of the ACM, 33(10):30–53, October 1990.Google Scholar
  9. 9.
    N Karmarkar. A New Polynomial Time Algorithm for Linear Programming. Combinatorica, (4):373–395, 1984.Google Scholar
  10. 10.
    F Kordon. Prototypage de systèmes parallèles à partir de réseaux de Petri colorés. PhD thesis, Institut Blaise Pascal, Univ. Paris VI, 4, Place Jussieu 75252 PARIS CEDEX 05, 1992.Google Scholar
  11. 11.
    D Kumar. Systems with low distributed simulation overhead. IEEE Transactions on Parallel and Distributed Systems, 3(2):155–165, March 1992.Google Scholar
  12. 12.
    Y Li and WM Wonham. Control of Vector Discrete-Event Systems. I The Base Model. IEEE Transactions on Automatic Control, 38(8):1214–1227, August 1993.Google Scholar
  13. 13.
    J Miguel and M Graña. Towards the Distributed Implementation of Discrete Event Simulation Languages. In Proc. Int. Conf. on Decentralized and Distributed Systems ICDDS'93, pages 273–285, Mallorca, España, September 1993.Google Scholar
  14. 14.
    J Misra. Distributed discrete-event simulation. ACM Computing Surveys, 18(1), March 1986.Google Scholar
  15. 15.
    T Murata. Petri nets: properties, analysis, and applications. Proceedings of the IEEE, 77(4), April 1989.Google Scholar
  16. 16.
    RA Nelson, LM Haibt, and PB Sheridan. Casting Petri Nets into programs. IEEE Trnasactions on Software Engineering, 9(5):590–602, September 1983.Google Scholar
  17. 17.
    C Ramchandany. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. PhD thesis, Massachusetts Institute of Technology, Massachusetts 02139, USA, 1974.Google Scholar
  18. 18.
    M Silva. Las Redes de Petri en la Informática y en la Automática. AC, Madrid, 1985.Google Scholar
  19. 19.
    M Silva and JM Colom. On the Computation of Structural Synchronic Invariants in P/T Nets. In G Rozenberg, H Genrich, and G Roucairol, editors, Advances in Petri Nets 1988, volume 340 of Lecture Notes in Computer Sciences, pages 387–417. Springer-Verlag, Berlin, Germany, 1988.Google Scholar
  20. 20.
    M Silva and R David. Synthese programmée des automates logiques décrits par réseaux de petri: Une méthode de mise en oeuvre sur microcalculateurs. RairoAutomatique, 13(4):369–393, november 1979.Google Scholar
  21. 21.
    M Silva and S Velilla. Programmable logic controllers and Petri Nets: A comparative study. In Proc. of the Third IFAC/IFIP Symposium, Software for ComputerControl 1982, pages 83–88. Pergamon Press, 1982.Google Scholar
  22. 22.
    D Taubner. On the implementation of Petri Nets. In G. Rozenberg, H. Genrich, and G. Roucairol, editors, Advances in Petri Nets 1988, volume 340 of Lecture Notes in Computer Sciences, pages 418–439. Springer-Verlag, Berlin, Germany, 1988.Google Scholar
  23. 23.
    E. Teruel, J.M. Colom, and M. Silva. Linear analysis of deadlock-freeness of Petri net models. In Proc. of the European Control Conference, ECC'93, pages 513–518, Groningen, The Netherlands, June 28–July 1 1993.Google Scholar
  24. 24.
    R Valette. Nets in production systems. In G Goos and Hartmann, editors, Petri Nets: Applications and Relationships to Other Models of Concurrency, volume 255 of Lecture Notes in Computer Sciences, pages 191–217. Springer-Verlag, Berlin, Germany, 1986.Google Scholar
  25. 25.
    JL Villarroel. Integración Informática del Control en Sistemas Flexibles de Fabricación. PhD thesis, Universidad de Zaragoza, María de Luna 3 E-50015 Zaragoza, España, 1990.Google Scholar
  26. 26.
    BP Zeigler. Theory of Modelling and Simulation. Wiley-Interscience, 1976.Google Scholar
  27. 27.
    BP Zeigler and WH Sanders. Frameworks for Evaluating Discrete Event Dynamic Systems. Discrete Event Dynamic Systems: Theory and Applications, (3):113–118, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. L. Briz
    • 1
  • J. M. Colom
    • 1
  1. 1.Depto. Ingeniería Eléctrica e InformáticaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations