Advertisement

Liveness in bounded Petri nets which are covered by T-invariants

  • Kurt Lautenbach
  • Hanno Ridder
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 815)

Abstract

In this paper a criterion is introduced that is sufficient for the liveness in Petri nets which are bounded and covered by non-negative T-invariants.

Keywords

liveness linear invariants deadlocks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bau90]
    Bernd Baumgarten. Petri-Netze: Grundlagen und Anwendungen. BI-Wiss.-Verl., Mannheim; Wien; Zürich, 1990. (in German).Google Scholar
  2. [CCS91]
    J. Campos, G. Chiola, and M. Silva. Properties and performance bounds for closed free choice synchronized monoclass queueing networks. IEEE Transactions on Automatic Control, 36(12), December 1991.Google Scholar
  3. [Des93]
    Jörg Desel. Regular marked petri nets. To appear in: Graph theoretic Concepts in Computer Science, 1993.Google Scholar
  4. [ES92]
    Javier Esparza and Manuel Silva. A polynomial-time algorithm to decide liveness of bounded free choice nets. Theoretical Computer Science, (102):185–205, 1992.Google Scholar
  5. [Hac78]
    M. Hack. Extended state-machine allocatable nets (esma), an extension of free choice petri net results. Computation Structures Group Memo 78-1, MIT, Project MAC, 1978.Google Scholar
  6. [JV80]
    M. Jantzen and R. Valk. Formal properties of place/transition nets. Net Theory and Application, LNCS 84:165–212, 1980.Google Scholar
  7. [KL82]
    W.E. Kluge and K. Lautenbach. The orderly resolution of memory access conflicts among competing channel processes. IEEE Transactions of Computers, C-31(3):194–207, 1982.Google Scholar
  8. [Lau73]
    K. Lautenbach. Exakte bedingungen der lebendigkeit für eine klasse von petrinetzen. Berichte der GMD 82, GMD, Bonn, 1973. (in German).Google Scholar
  9. [Lau77]
    K. Lautenbach. Ein kombinatorischer ansatz zur beschreibung und erreichung von fairness in scheduling-problemen. Applied Computer Science, 8:228–250, 1977. (in German).Google Scholar
  10. [Lau87]
    Kurt Lautenbach. Linear algebraic calculation of deadlocks and traps. In Voss, Genrich, and Rozenberg, editors, Concurrency and Nets, pages 315–336. Springer Verlag, 1987.Google Scholar
  11. [Rei91]
    Wolfgang Reisig. Petri nets. Springer Verlag, 2nd edition, 1991.Google Scholar
  12. [Sta90]
    H. Peter Starke. Analyse von Petri-Netz-Modellen. Teubner, 1990. (in German).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Kurt Lautenbach
    • 1
  • Hanno Ridder
    • 1
  1. 1.Institute for Software TechnologyUniversity Koblenz-LandauKoblenzGermany

Personalised recommendations