Craig interpolation property in modal logics with provability interpretation

  • Tatiana Sidon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 813)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Smorynski C. Beth's theorem and self-referential sentences. In: Macintyre et al. eds. Logic Colloquium '77, North Holland, Amsterdam, 1978.Google Scholar
  2. [2]
    Boolos G. On systems of modal logic with provability interpretations. Theoria, 1980, v. 46, No.l, pp. 7–18.Google Scholar
  3. [3]
    Beklemishev L.D. A provability logic without Craig's interpolation property. Mat. Zametki, 1989, v.45, No.6, pp. 12–22. (In Russian. English translation in Math. Notes, 1989, v.45.)Google Scholar
  4. [4]
    Beklemishev L.D. On the classification of propositional provability logics. Izvestiya Akademii Nauk SSSR, ser. mat., 1989, v.53, No.5, p.915–943. (In Russian. English translation in Math. USSR Izvestiya, 1990, v.35, No.2, pp.247–275.)Google Scholar
  5. [5]
    Guaspari D., Solovay R. Rosser's sentences. Annals of Mathematical Logic, 1979, v. 16, pp. 81–99.Google Scholar
  6. [6]
    Shavrukov V.Yu. On Rosser's provability predicate. Zeitschr. f. math. Logic und Grundlagen d. Math., 1991, Bd.7, S.317–330.Google Scholar
  7. [7]
    Artemov S. Logic of Proofs. Techn.Rep. 93-52, Mathematical Sciences Institute, Cornell University. (To appear in Annals of Pure and Applied Logic, 1994.)Google Scholar
  8. [8]
    Goryachev S.V. Ob arifmetike s lokal'nym principom refleksii dlya posserovskoi formuly dokazuemosti. Matematicheskie Zametki, 1989, v.46, No.3, pp.12–21 (in Russian).Google Scholar
  9. [9]
    D.H.J. de Jong A simplification of a completeness proof of Guaspari and Solovay. Studia Logica, 1987, v.46, pp.187–192.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Tatiana Sidon
    • 1
  1. 1.Section of Mathematical Logic Department of MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations