Classes with pairwise equivalent enumerations

  • S. S. Goncharov
  • S. A. Badaev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 813)


  1. [1]
    Rogers, H. jr. Gödel numberings of partial recursive functions. J. Symb. Logic, v.23, n.3(1958), 331–341.Google Scholar
  2. [2]
    Pour-El, M. B. Gödel numberings versus Friedberg numberings. Proc. Amer. Math. Soc., v.15, n.2(1964), 252–255.Google Scholar
  3. [3]
    Ershov, Yu. L. Numerations of families of general recursive functions. Sibirsk. Matem. Zhurn., v.8, n.5(1967), 1015–1025 (Russian).Google Scholar
  4. [4]
    Ershov, Yu. L. The theory of numberings. Nauka, Moscow, 1977 (Russian).Google Scholar
  5. [5]
    Lavrov, I. A. Computable numberings. Logic, Foundations of Mathematics and Computability Theory, pp.195–206, D. Reidel Publishing Company, Dordrecht-Holland, 1977.Google Scholar
  6. [6]
    Mal'cev, A. I. Positive and negative enumerations. Soviet Math. Dokl., v.6(1965), 75–77.Google Scholar
  7. [7]
    V'jugin, V. V. Certain examples of upper semilattice of computable numerations. Algebra and Logic, v.12, n.5(1973), 287–296.Google Scholar
  8. [8]
    Selivanov. V. L. The numerations of families of general recursive functions. Algebra and Logic, v.15(1976), 128–141.Google Scholar
  9. [9]
    Badaev, S. A. On computable enumerations of the families of total recursive functions. Algebra and Logic, v.16, n.2(1977), 83–98.Google Scholar
  10. [10]
    Goncharov, S. S. Positive computable enumerations. Doklady Akademii Nauk (of Russia), v.332, n.2(1993), 142–143 (Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • S. S. Goncharov
  • S. A. Badaev

There are no affiliations available

Personalised recommendations