Advertisement

Gram's equation — A probabilistic proof

  • Emo Welzl
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 812)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Barnette, The sum of the solid angles of a d-polytope, Geometriae Dedicata 1 (1972) 100–102Google Scholar
  2. [2]
    M. Dehn, Die Eulersche Formel in Zusammenhang mit dem Inhalt in der nicht-Euklidischen Geometrie, Math. Ann. 61 (1905) 561–586Google Scholar
  3. [3]
    H. Edelsbrunner, The union of balls and its dual shape, Proc. 9th Annual ACM Symposium on Computational Geometry (1993) 218–231Google Scholar
  4. [4]
    J. P. Gram, Om Rumvinklerne i et Polyeder, Tidsskr. Math. 4 (1874), 161–163Google Scholar
  5. [5]
    B. Grünbaum, Convex Polytopes, John Wiley & Sons, Interscience, London (1967)Google Scholar
  6. [6]
    de Gua de Malves, Propositions neuves, et non moins utiles que curieuses, sur le tétraèdre, Hist. Acad. R. des Sci., Paris (1783)Google Scholar
  7. [7]
    H. Hopf, Über Zusammenhänge zwischen Topologie und Metrik im Rahmen der elementaren Geometrie, Math. Physik. Sem. Ber. 3 (1953) 16–29Google Scholar
  8. [8]
    H. Poincaré, Sur la generalization d'un theoreme élémentaire de Geometrie, Compt. Rend. Acad. Sci. Paris 140 (1905) 113–117Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Emo Welzl
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations