Advertisement

Classifying regular languages by their syntactic algebras

  • Magnus Steinby
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 812)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al91]
    J. Almeida: On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990), 333–350.Google Scholar
  2. [Bü89]
    J.R. Büchi: Finite automata, their algebras and grammars. Towards a theory of formal expressions (ed. D. Siefkes). Springer-Verlag, New York 1989.Google Scholar
  3. [BS81]
    S. Burris and H.P. Sankappanavar: A course in universal algebra. Springer-Verlag, New York 1981.Google Scholar
  4. [ČPR71]
    J. Černý, A. Pirická and B. Rosenauerová: On directable automata. Kybernetika (Praha) 7(1971), 289–297.Google Scholar
  5. [Co81]
    P.M. Cohn: Universal algebra (2. ed.). D. Reidel Publ. Company, Dordrecht 1981.Google Scholar
  6. [Ei76]
    S. Eilenberg: Automata, languages, and machines. Volume B. Academic Press, New York 1976.Google Scholar
  7. [Ho91]
    J.M. Howie: Automata and languages. Clarendon Press, Oxford 1991.Google Scholar
  8. [La79]
    G. Lallement: Semigroups and combinatorial applications. John Wiley & Sons, NewYork 1979.Google Scholar
  9. [Pi86]
    J.E. Pin: Varieties of formal languages. North Oxford Academic Publ., London 1986.Google Scholar
  10. [St79]
    M. Steinby: Syntactic algebras and varieties of recognizable sets. Les arbres en algèbre et en programmation, 4éme Colloque de Lille (Proc. Colloq., Lille 1979), University of Lille, Lille 1979, 226–240.Google Scholar
  11. [St81]
    M. Steinby: Some algebraic aspects of recognizability. Fundamentals of computation theory (Proc. Conf., Szeged 1981). Lect. Notes in Comput. Sci. 117, Springer-Verlag, Berlin 1981, 360–372.Google Scholar
  12. [St92]
    M. Steinby: A theory of tree language varieties. Tree automata and languages (eds. M. Nivat and A. Podelski), Elsevier Science Publishers B.V., Amsterdam 1992, 57–81.Google Scholar
  13. [Th80]
    D. Thérien: Classification of regular languages by congruences. Rep. CS-80-19, University of Waterloo, Dept. Comput. Sci., Waterloo, Ontario 1980.Google Scholar
  14. [Th81]
    D. Thérien: Recognizable languages and congruences. Semigroup Forum 23 (1981), 371–373.Google Scholar
  15. [We92]
    W. Wechler: Universal algebra for computer scientists. EATCS Monographs on theoretical computer science, Vol. 25, Springer-Verlag, Berlin 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Magnus Steinby
    • 1
  1. 1.Department of MathematicsUniversity of TurkuFinland

Personalised recommendations