Classifying regular languages by their syntactic algebras

  • Magnus Steinby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 812)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Al91]
    J. Almeida: On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990), 333–350.Google Scholar
  2. [Bü89]
    J.R. Büchi: Finite automata, their algebras and grammars. Towards a theory of formal expressions (ed. D. Siefkes). Springer-Verlag, New York 1989.Google Scholar
  3. [BS81]
    S. Burris and H.P. Sankappanavar: A course in universal algebra. Springer-Verlag, New York 1981.Google Scholar
  4. [ČPR71]
    J. Černý, A. Pirická and B. Rosenauerová: On directable automata. Kybernetika (Praha) 7(1971), 289–297.Google Scholar
  5. [Co81]
    P.M. Cohn: Universal algebra (2. ed.). D. Reidel Publ. Company, Dordrecht 1981.Google Scholar
  6. [Ei76]
    S. Eilenberg: Automata, languages, and machines. Volume B. Academic Press, New York 1976.Google Scholar
  7. [Ho91]
    J.M. Howie: Automata and languages. Clarendon Press, Oxford 1991.Google Scholar
  8. [La79]
    G. Lallement: Semigroups and combinatorial applications. John Wiley & Sons, NewYork 1979.Google Scholar
  9. [Pi86]
    J.E. Pin: Varieties of formal languages. North Oxford Academic Publ., London 1986.Google Scholar
  10. [St79]
    M. Steinby: Syntactic algebras and varieties of recognizable sets. Les arbres en algèbre et en programmation, 4éme Colloque de Lille (Proc. Colloq., Lille 1979), University of Lille, Lille 1979, 226–240.Google Scholar
  11. [St81]
    M. Steinby: Some algebraic aspects of recognizability. Fundamentals of computation theory (Proc. Conf., Szeged 1981). Lect. Notes in Comput. Sci. 117, Springer-Verlag, Berlin 1981, 360–372.Google Scholar
  12. [St92]
    M. Steinby: A theory of tree language varieties. Tree automata and languages (eds. M. Nivat and A. Podelski), Elsevier Science Publishers B.V., Amsterdam 1992, 57–81.Google Scholar
  13. [Th80]
    D. Thérien: Classification of regular languages by congruences. Rep. CS-80-19, University of Waterloo, Dept. Comput. Sci., Waterloo, Ontario 1980.Google Scholar
  14. [Th81]
    D. Thérien: Recognizable languages and congruences. Semigroup Forum 23 (1981), 371–373.Google Scholar
  15. [We92]
    W. Wechler: Universal algebra for computer scientists. EATCS Monographs on theoretical computer science, Vol. 25, Springer-Verlag, Berlin 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Magnus Steinby
    • 1
  1. 1.Department of MathematicsUniversity of TurkuFinland

Personalised recommendations