Two stream ciphers

  • W. G. Chambers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 809)


  1. 1.
    A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, A. Shamir, “Reconstructing truncated integer variables satisfying linear congruences”, SIAM J. Comput., 17, 262–280 (1988)Google Scholar
  2. 2.
    M. Ward, “The arithmetical theory of linear recurring series”, Transactions of the American Mathematical Society, 35, 600–628 (July 1933)Google Scholar
  3. 3.
    A. D. Barnard, J. R. Silvester, W. G. Chambers, “Guaranteeing the period of linear recurring sequences (mod 2e)”, IEE Proceedings-E, 140. 243–245, (Sept 1993)Google Scholar
  4. 4.
    W. G. Chambers, Z-D. Dai, “On binary sequences from recursions'modulo 2e’ made non-linear by the bit-by-bit ‘XOR’ function”, Lecture Notes in Computer Science, 547, 200–204, 1991Google Scholar
  5. 5.
    W. G. Chambers, “Clock-controlled shift registers in binary sequence generators”, IEE Proceedings E, 135, 17–24 (1988)Google Scholar
  6. 6.
    J. A. Gordon, “Very simple method to find the minimal polynomial of an arbitrary non-zero element of a finite field”, Electronics Letters 12, 663–664 (Dec 1976)Google Scholar
  7. 7.
    E. R. Berlekamp, Algebraic Coding Theory, (New York: McGraw-Hill) 1968; Section 4.2Google Scholar
  8. 8.
    B. J. M. Smeets, W. G. Chambers, “Windmill pn-sequence generators”, IEE Proceedings E, 136, 401–404 (Sept 1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • W. G. Chambers
    • 1
  1. 1.Department of Electronic and Electrical EngineeringKing's College LondonStrand LondonUK

Personalised recommendations