Advertisement

Design principles for dedicated hash functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 809)

Abstract

Dedicated hash functions are cryptographically secure compression functions which are designed specifically for hashing. They intend to form a practical alternative for hash functions based on another cryptographic primitive like a block cipher or modular squaring. About a dozen of dedicated hash functions have been proposed in the literature. This paper discusses the design principles on which these hash functions are based.

Keywords

Hash Function Block Cipher Stream Cipher Round Function Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Biham and A. Shamir, “Differential Cryptanalysis of the Data Encryption Standard,” Springer-Verlag, 1993.Google Scholar
  2. 2.
    J. Daemen, R. Govaerts, and J. Vandewalle, “A framework for the design of oneway hash functions including cryptanalysis of Damgård's one-way function based on a cellular automaton,” Advances in Cryptology, Proc. Asiacrypt'91, LNCS 739, H. Imai, R.L. Rivest, and T. Matsumoto, Eds., Springer-Verlag, 1993, pp. 82–96.Google Scholar
  3. 3.
    J. Daemen, R. Govaerts, and J. Vandewalle, “A hardware design model for cryptographic algorithms,” Computer Security — ESORICS 92, Proc. Second European Symposium on Research in Computer Security, LNCS 648, Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, Eds., Springer-Verlag, 1992, pp. 419–434.Google Scholar
  4. 4.
    J. Daemen, R. Govaerts, and J. Vandewalle, “Fast hashing both in hard-and software,” Presented at the Rump Session of Eurocrypt'93.Google Scholar
  5. 5.
    I.B. Damgård, “Collision free hash functions and public key signature schemes,” Advances in Cryptology, Proc. Eurocrypt'87, LNCS 304, D. Chaum and W.L. Price, Eds., Springer-Verlag, 1988, pp. 203–216.Google Scholar
  6. 6.
    I.B. Damgård, “A design principle for hash functions,” Advances in Cryptology, Proc. Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416–427.Google Scholar
  7. 7.
    Data Encryption Standard,” Federal Information Processing Standard (FIPS), Publication 46, National Bureau of Standards, U.S. Department of Commerce, Washington D.C., January 1977.Google Scholar
  8. 8.
    “Secure Hash Standard”, Federal Information Processing Standard (FIPS), Publication 180, National Institute of Standards and Technology, US Department of Commerce, Washington D.C., 1993.Google Scholar
  9. 9.
    M. Girault, R. Cohen, and M. Campana, “A generalized birthday attack,” Advances in Cryptology, Proc. Eurocrypt'88, LNCS 330, C.G. Günther, Ed., Springer-Verlag, 1988, pp. 129–156.Google Scholar
  10. 10.
    B.S. Kaliski, “One-way permutations on elliptic curves,” Journal of Cryptology, Vol. 3, No. 1, 1991, pp. 187–199.Google Scholar
  11. 11.
    B.S. Kaliski, “The MD2 Message-Digest algorithm,” Request for Comments (RFC) 1319, Internet Activities Board, Internet Privacy Task Force, April 1992.Google Scholar
  12. 12.
    X. Lai and J.L. Massey, “Hash functions based on block ciphers,” Advances in Cryptology, Proc. Eurocrypt'92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 55–70.Google Scholar
  13. 13.
    M. Matsui, “Linear cryptanalysis method for DES cipher,“ Advances in Cryptology, Proc. Eurocrypt'93, LNCS, Springer-Verlag, to appear.Google Scholar
  14. 14.
    R. Merkle, “A fast software one-way hash function,” Journal of Cryptology, Vol. 3, No. 1, 1990, pp. 43–58.Google Scholar
  15. 15.
    S. Miyaguchi, M. Iwata, and K. Ohta, “New 128-bit hash function,” Proc. 4th International Joint Workshop on Computer Communications, Tokyo, Japan, July 13–15, 1989, pp. 279–288.Google Scholar
  16. 16.
    S. Miyaguchi, “The FEAL cipher family,” Advances in Cryptology, Proc. Crypto'90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 627–638.Google Scholar
  17. 17.
    S. Miyaguchi, K. Ohta, and M. Iwata, “128-bit hash function (N-hash),” Proc. Securicom 1990, pp. 127–137.Google Scholar
  18. 18.
    S. Miyaguchi, K. Ohta, and M. Iwata, “128-bit hash function (N-hash),” NTT Review, Vol. 2, No. 6, 1990, pp. 128–132.Google Scholar
  19. 19.
    M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic applications,” Proc. 21st ACM Symposium on the Theory of Computing, 1990, pp. 387–394.Google Scholar
  20. 20.
    B. Preneel, “Analysis and design of cryptographic hash functions,” Doctoral Dissertation, Katholieke Universiteit Leuven, 1993.Google Scholar
  21. 21.
    B. Preneel, “Cryptographic hash functions,” Kluwer Academic Publishers, 1994.Google Scholar
  22. 22.
    B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on block ciphers: a synthetic approach,” Advances in Cryptology, Proc. Crypto'93, LNCS, Springer-Verlag, to appear.Google Scholar
  23. 23.
    “Race Integrity Primitives Evaluation (RIPE): final report,” RACE 1040, 1993.Google Scholar
  24. 24.
    R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications ACM, Vol. 21, February 1978, pp. 120–126.Google Scholar
  25. 25.
    R.L. Rivest, “The MD4 message digest algorithm,” Advances in Cryptology, Proc. Crypto'90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303–311.Google Scholar
  26. 26.
    R.L. Rivest, “The MD4 message-digest algorithm,” Request for Comments (RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April 1992.Google Scholar
  27. 27.
    R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments (RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April 1992.Google Scholar
  28. 28.
    C.P. Schnorr, “An efficient cryptographic hash function,” Presented at the Rump Session of Crypto '91.Google Scholar
  29. 29.
    C.P. Schnorr, “FFT-Hash II, efficient cryptographic hashing,” Advances in Cryptology, Proc. Eurocrypt'92, LNCS 658, R.A. Rueppel, Ed., Springer-Verlag, 1993, pp. 45–54.Google Scholar
  30. 30.
    C.P. Schnorr and S. Vaudenay, “Parallel FFT-Hashing,” These Proceedings.Google Scholar
  31. 31.
    G. Yuval, “How to swindle Rabin,” Cryptologia, Vol. 3, 1979, pp. 187–189.Google Scholar
  32. 32.
    Y. Zheng, J. Pieprzyk, and J. Seberry, “HAVAL — a one-way hashing algorithm with variable length output,” Advances in Cryptology, Proc. Auscrypt'92, LNCS 718, J. Seberry and Y. Zheng, Eds., Springer-Verlag, 1993, pp. 83–104.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  1. 1.Laboratorium ESAT-COSICKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations