Embedding k-D meshes into optimum hypercubes with dilation 2k-1 extended abstract

  • Said Bettayeb
  • Zevi Miller
  • Tony Peng
  • Hal Sudborough
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 805)


It is shown that, for every k, and for every k-dimensional mesh M, there is a one-to-one embedding of M into its optimum size hypercube with dilation at most 2k-1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BMS]
    S. Bettayeb, Z. Miller, and I. H. Sudborough, “Embedding Grids into Hypercubes” J. Computer and System Sci. (1992).Google Scholar
  2. [C]
    M.-Y. Chan, “Embedding of Grids into Optimal Hypercubes” SIAM J. Computing, 20,5 (1991), pp. 834–864.Google Scholar
  3. [C2]
    M.-Y. Chan, F. Chin, S. Xu, and F. He, “Dilation 5 Embedding of 3-Dimensional Meshes into Hypercubes” Proc. 1993 IEEE Symp. on Parallel and Distributed Computing.Google Scholar
  4. [L]
    F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.Google Scholar
  5. [MS]
    Z. Miller and I. H. Sudborough, “Compressing Grids into Hypercubes” to appear in Networks.Google Scholar
  6. [RSU]
    M. Roettger, U.P. Schroeder, W. Unger, “Embedding 3-Dimensional Grids into Optimal Hypercubes” these proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Said Bettayeb
    • 1
  • Zevi Miller
    • 2
  • Tony Peng
    • 3
  • Hal Sudborough
    • 4
  1. 1.Department of Computer ScienceLouisiana State UniversityBaton Rouge
  2. 2.Department of Mathematics and StatisticsMiami UniversityOxford
  3. 3.Mathematics and Computer ScienceCreighton UniversityOmaha
  4. 4.Computer Science Program, EC 3.1University of Texas at DallasRichardson

Personalised recommendations