On the parallel complexity of iterated multiplication in rings of algebraic integers

  • Stephan Waack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 805)


The parallel complexity of iterated multiplication in an arbitrary but fixed ring of algebraic integers is studied. Boolean circuits of fan-in 2 are used. It is shown that polynomial time uniform circuits of logdepth can be constructed to solve this problem algorithmically.


uniform boolean circuits of logarithmic depth iterated multiplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Beame, S. A. Cook, H. J. Hoover, Logdepth circuits for division and related problems, SIAM J. Computing 1986, 15(4), pp. 993–1003.Google Scholar
  2. 2.
    A. Borodin, S. A. Cook, N. Pippenger, Parallel computation for well-endowed rings and space bounded probabilistic machines, TR 162/83, University of Toronto.Google Scholar
  3. 3.
    S. A. Cook, The classification of problems which have fast parallel algorithms, in: Lecture Notes in Computer Sci. 158, Springer-Verlag, Berlin, 1983.Google Scholar
  4. 4.
    S. A. Cook, A taxonomie of problems with fast parallel algorithms, Information and Control 1985, 64. pp. 2–22.Google Scholar
  5. 5.
    S. A. Cook, P. McKenzie, The parallel complexity of abelian permutation group problems, SIAM J. Computing 1987, 16(2) pp. 880–909.Google Scholar
  6. 6.
    S. A. Cook, P. McKenzie, Problems complete for deterministic logspace, J. of Algorithms 1987, 8 pp. 385–394.Google Scholar
  7. 7.
    J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages, and computation, Addison-Wesley, Reading, 1979.Google Scholar
  8. 8.
    S. Lang, Algebra, Addison-Wesley, Reading 1965Google Scholar
  9. 9.
    J. H. Reif, Logarithmic depth circuits for algebraic functions, SLAM J. Computing 1986, 15 (1), pp. 231–242.Google Scholar
  10. 10.
    J. H. Reif, S. Tate, Optimal size integer division circuits, in: Proc. 21st ACM STOC 1989, pp. 264–273.Google Scholar
  11. 11.
    V. Pan, Complexity of computations with matrices and polynomials, SIAM review 1992, 34-2, pp. 225–262.Google Scholar
  12. 12.
    W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci. 1981, 22, pp.365–383.Google Scholar
  13. 13.
    J. E. Savage, The complexity of computing, John Wiley, New York 1976.Google Scholar
  14. 14.
    I. Wegener, The complexity of Boolean functions, Wiley-Teubner Series in Comput. Sci., 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Stephan Waack
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikGeorg-August-UniversitätGöttingenGermany

Personalised recommendations