Advertisement

Representations of gossip schemes

  • David W. Krumme
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 805)

Abstract

Formalisms for representing gossip problems are surveyed. A new method “calling schemes” is presented which generalizes existing methods. This survey is intended to serve primarily as a basis for future work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.T. Bumby, A problem with telephones, SIAM J. Algebraic Discrete Methods 2 (1981) 13–18.Google Scholar
  2. 2.
    G. Burosch, V.K. Leont'ev, and A.S. Markosyan, On the possibility of information propagation on graphs, Soviet Math. Doklady 37 (1988) 52–55.Google Scholar
  3. 3.
    G. Burosch and J.M. Laborde, Label-connected graphs — an overview, Technical Report 898, Institut Imag, Grenoble, France, 1992.Google Scholar
  4. 4.
    R.C. Entringer and P.J. Slater, Gossips and telegraphs, J. Franklin Institute 307 (1979) 353–360.Google Scholar
  5. 5.
    F. Göbel, J.O. Cerdeira, and H.J. Veldman, Label-connected graphs and the gossip problem, Discrete Mathematics 87 (1991) 9–40.Google Scholar
  6. 6.
    S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18 (1988) 319–349.Google Scholar
  7. 7.
    D.J. Kleitman and J.B. Shearer, Further gossip problems, Discrete Mathematics 30 (1980) 151–156.Google Scholar
  8. 8.
    D.W. Krumme, K.N. Venkataraman, and G. Cybenko. Gossiping in minimal time, SIAM J. Computing 21 (1992) 111–139.Google Scholar
  9. 9.
    D. Krumme, Reordered gossip schemes, submitted to Discrete Mathematics.Google Scholar
  10. 10.
    R. Labahn, Information flows on hypergraphs, Discrete Mathematics 113 (1993) 71–97.Google Scholar
  11. 11.
    R. Labahn, Kernels of minimum size gossip schemes, to appear in Discrete Mathematics. Also Technical Reports 92774 (Part I) and 92785 (Part II), Forschungsinstitut für Diskrete Mathematik, Rheinische Friedrich-Wilhelms-Universität, Nassestr 2, D-5300 Bonn, Germany, 1992.Google Scholar
  12. 12.
    D. West, A class of solutions to the gossip problem, Part I, Discrete Mathematics 39 (1982) 307–326.Google Scholar
  13. 13.
    O. Wolfson and A. Segall, The communication complexity of atomic commitment and of gossiping, SIAM J. Computing 20 (1991) 423–450.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • David W. Krumme
    • 1
  1. 1.Tufts UniversityMedfordUSA

Personalised recommendations