Fault-tolerant linear broadcasting

  • Krzysztof Diks
  • Andrzej Pelc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 805)


In linear broadcasting, packets originally stored in one node, called the source, have to visit all other nodes of the network. Every packet has a predetermined route indicating in which order it visits the nodes. A faulty link or node of the network destroys all packets passing through it. A linear broadcasting scheme consisting of packets' routes is f-fault-tolerant if every fault-free node is visited by at least one packet for any configuration of at most f link or node failures. We estimate the minimum number of packets for which there exists an f-fault-tolerant linear broadcasting scheme in complete networks, and we construct schemes using few packets. Variations of this problem when faults can occur only in links or only in nodes are also considered.


broadcasting fault-tolerance packet route 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.A. Berman & M. Hawrylycz, Telephone problems with failures, SIAM J. Alg. Disc. Meth. 7 (1986), 13–17.Google Scholar
  2. 2.
    D. Bienstock, Broadcasting with random faults, Disc. Appl. Math. 20 (1988), 1–7.Google Scholar
  3. 3.
    S. Bitan & S. Zaks, Optimal linear broadcast, J. of Algorithms 14 (1993), 288–315.Google Scholar
  4. 4.
    B.S. Chlebus, K. Diks & A. Pelc, Sparse networks supporting efficient reliable broadcasting, Proc. ICALP'93, LNCS 700, 388–397.Google Scholar
  5. 5.
    B.S. Chlebus, K. Diks & A. Pelc, Optimal broadcasting in faulty hypercubes, Digest of Papers, FTCS'21 (1991), 266–273.Google Scholar
  6. 6.
    C.T. Chou & I.S. Gopal, Linear broadcast routing, J. of Algorithms 10 (1989), 490–517.Google Scholar
  7. 7.
    I. Cidon & I.S. Gopal, PARIS: An approach to private integrated networks, Intern. J. Analog Digital Cable Systems 1 (1988), 77–85.Google Scholar
  8. 8.
    T. Cormen, C. Leisserson, & R.L. Rivest, Introduction to algorithms, The MIT Press, 1990.Google Scholar
  9. 9.
    P. Erdös & Szekers, A combinatorial problem in geometry, Compositio Mathematica 2 (1935), 463–470.Google Scholar
  10. 10.
    L. Gargano, Tighter bounds on fault-tolerant broadcasting and gossiping, Networks 22 (1992), 469–486.Google Scholar
  11. 11.
    D. Greenberg, Report dispersal, in: Open problems for the International Workshop on Networks and Information Dissemination, Bowen Island, B.C. (1992).Google Scholar
  12. 12.
    R.W. Haddad, S. Roy & A.A. Schafer, On gossiping with faulty telephone lines, SIAM J. Alg. Disc. Meth. 8 (1987), 439–445.Google Scholar
  13. 13.
    S.M. Hedetniemi, S.T. Hedetniemi & A.L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18 (1988), 319–349.Google Scholar
  14. 14.
    A. Segal, Distributed network protocols, IEEE Trans. Inf. Theory IT-29 (1983), 23–35.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Krzysztof Diks
    • 1
  • Andrzej Pelc
    • 2
  1. 1.Instytut InformatykiUniwersytet WarszawskiWarszawaPoland
  2. 2.Département d'InformatiqueUniversité du Québec à HullHullCanada

Personalised recommendations