Advertisement

Work-Optimal thinning algorithm on SIMD machines

  • Ubéda Stéphane
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 805)

Abstract

We proposes a parallel thinning algorithm for binary pictures. Given an N × N image including an object, our algorithm computes in O(N2) the skeleton of the object, using a pyramidal decomposition of the picture. With the Exclusive Read Exclusive Write (EREW) Parallel Random Access Machine (PRAM), our algorithm runs in O(log N) time using O(N2/log N) processors. Same complexity is obtained using an SIMD hypercube. Both the PRAM and the Hypercube algorithms are workoptimal. We describe the basic operator, the pyramidal algorithm and some experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Blum. A Transformation For Extracting New Descriptors. Symp. On Models for perception of speech and visual form, MIT Press, 1964.Google Scholar
  2. 2.
    J. Brandenburg and D. Scott. Minimal mesh embeddings in binary hypercubes. IEEE Trans. Comp., 37(10):1284–1285, 1988.Google Scholar
  3. 3.
    Y.S. Chen and W.H. Hsu. A systematic approach for designing 2-subcycle and pseudo-subcycle parallel thinning algorithms. Pattern Recognition, 22:267–282, 1989.Google Scholar
  4. 4.
    R.T. Chin, H.K. Wan, D.L. Stover, and R.D. Iverson. A one-pass thinning algorithm and its parallel implementation. Computer Vision, Graphics and Image Processing, 40:30–40, 1987.Google Scholar
  5. 5.
    M. Cosnard and A. Ferreira. On the real power of loosely coupled parallel architectures. Parallel Processing Letters, 1(2):103–111, 1991.Google Scholar
  6. 6.
    A. Favre and H.J. Keller. A parallel syntactic thinning by recording of binary pictures. Computer Vision, Graphics and Image Processing, 23:99–112, 1983.Google Scholar
  7. 7.
    A. Ferreira and S. Ubéda. Ultra-fast contour tracking with application to thinning. Research Report 87, LITH/EPF Lausanne, 1993.Google Scholar
  8. 8.
    Z. Guo and R.W. Hall. Parallel thinning with two-subiteration algorithms. Comm. ACM, 32:359–373, 1989.Google Scholar
  9. 9.
    C.M. Holt, A. Stewart, M. Clint, and R.H. Perrott. An improved parallel thinning algorithm. Communications of the ACM, 30:156–160, 1987.Google Scholar
  10. 10.
    R. Karp and V. Ramachadran. A survey of parallel algorithms for shared-memory machines. Technical report ucb/csd 88/408, university of California, Computer Science Division, 1988.Google Scholar
  11. 11.
    P.C.K. Kwok. A thinning algorithm by contour generation. Comm. ACM, 31:1314–1324, 1988.Google Scholar
  12. 12.
    D. Nassimi and S.S. Sahni. Data broadcasting in simd computers. IEEE Trans. on Comp., 30(2):101–107, 1981.Google Scholar
  13. 13.
    C. Neusius, J. Olszewski, and D. Scheerer. A flexible thinning algorithm allowing parallel, sequentiel and distributed application. Pattern Recognition, 18:47–55, 1992.Google Scholar
  14. 14.
    L. O'Gorman. k × k thinning. Computer Vision, Graphics and Image Processing, 51:195–215, 1990.Google Scholar
  15. 15.
    J. Olszewski. A flexible thinning algorithm allowing parallel, sequentiel and distributed application. ACM Trans. on Mathematical Sofware, 1990.Google Scholar
  16. 16.
    T. Pavlidis. A thinning algorithm for discrete binary images. Computer vision and image processing, 20:142–157, 1980.Google Scholar
  17. 17.
    C. Ronse. A topological characterization of thinning. Theoretical Computer Science, 43:31–41, 1986.Google Scholar
  18. 18.
    S. Suzuki and K. Abe. Binary picture thinning by an iterative parallel twosubcycle operation. Pattern Recognition, 20:297–307, 1987.Google Scholar
  19. 19.
    H. Tamura. A comparison of line thinning algorithms from a digital geometry viewpoint. In 4 th International Conference on Pattern Recognition (Kyoto,), volume 1, pages 715–719, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ubéda Stéphane
    • 1
    • 2
  1. 1.Laboratoire d'Informatique ThéoriqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Facultés des Sciences et TechniquesLaboratoire de Traitement du Signal et Instrumentation CNRS-URA 842St-Etienne Cedex 2France

Personalised recommendations