Skip to main content

Mean-field theory of the solar dynamo

  • Part II Generation of Large-Scale Magnetic Fields
  • Conference paper
  • First Online:
Advances in Solar Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 432))

  • 175 Accesses

Abstract

The generation of the solar magnetic field is generally ascribed to dynamo processes in the convection zone. The dynamo effects, differential rotation (Ω-effect and helical turbulence (α-effect are explained, and the basic properties of the mean-field dynamo equations are discussed in view of the observed properties of the solar cycle. Problems of the classical picture of a dynamo in the convection zone (fibril state of magnetic flux, field strength, magnetic buoyancy, polarity rules, differential rotation and butterfly diagram) are addressed and some alternatives to overcome these problems are presented. A possibility to make up for the missing radial gradient of rotation in the convection zone is an α2 Ω-dynamo with an anisotropic a-tensor. Dynamo solutions then might have the characteristics of the butterfly diagram. Another approach involves meridional circulation as the cause of the migration of a dynamo wave. Another suggestion is that the solar dynamo operates in the overshoot region at the base of the convection zone where strong fields, necessary to explain the polarity rules, can be stored and radial gradients in the angular velocity occur. As an alternative to the turbulent α-effect a dynamic α-effect based on magnetostrophic waves driven by a magnetic buoyancy instability of a magnetic flux layer is introduced. Model calculations which use the internal rotation of the Sun as deduced from helioseismology only show solar cycle behaviour if the turbulent diffusivity is reduced in the layer and the a-effect is concentrated near the equator. Another possibility is a combined model. The non-uniform rotation and most of the azimuthal magnetic flux are confined to a thin layer at the bottom of the convection zone where turbulent diffusion is greatly reduced, with the convective region above containing only weak fields for which the α-effect and turbulent diffusion operate in the conventional manner. The dynamo takes on the character of a surface wave at the interface between the two regions. Another possibility is a fibril field approach where non-axisymmetric flux tube instabilities lead to an α-effect which, together with differential rotation and reconnection of flux tubes, forms the basis of a flux tube dynamo. Furthermore the stochastic excitation of magnetic fields by a fluctuating a-effect is addressed. This contributes to irregularities in the solar cycle and leads to the excitation of a spectrum of dynamo modes which can be compared with decompositions of surface fields into spherical harmonics. An interesting consequence is the generation of a north-south asymmetry in the butterfly diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson, D.J., Gibbons, M.P. (1978): J. Fluid Mech. 85, 743

    Google Scholar 

  • Babcock, H.D. (1959): Astrophys. J. 130, 364

    Article  Google Scholar 

  • Brandenburg, A. (1993): “Hydromagnetic Simulations of the Solar Dynamo”, this volume

    Google Scholar 

  • Brandenburg, A., Tuominen, I. (1991): “The Solar Dynamo”, in The Sun and Cool Stars: activity, magnetism, dynamos, Tuominen, I., Moss, D., Rüidiger, G. (eds.), IAU-Coll. 130, Lecture Notes in Physics 380, 223

    Google Scholar 

  • Brandenburg, A., Nordlund, Å., Pulkinnen, P., Stein, R.F., Tuominen, I. (1990): Astron. Astrophys. 232, 277

    Google Scholar 

  • Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.A. (1989): Astrophys. J. 343, 526

    Article  Google Scholar 

  • Bullard E., Gellman, H. (1954): Phil. Trans. R. Soc. London A247, 213

    Google Scholar 

  • Carbonnell M., Oliver, R., Ballester J.L. (1993): Astron. Astrophys. 274, 497

    Google Scholar 

  • Cattaneo, F., Hughes, D.W. (1988): J. Fluid Mech. 196, 323

    Google Scholar 

  • Cattaneo, F., Vainshtein, S.I. (1991): Astrophys. J. 376, L21

    Article  Google Scholar 

  • Choudhuri, A.R. (1990): Astrophys. J. 355, 733

    Article  Google Scholar 

  • Cowling, T.G. (1934): Mon. Not. R. Astron. Soc. 94, 39

    Google Scholar 

  • DeLuca, E.E., Gilman, P.A. (1991): “The Solar Dynamo”, in The Solar Atmosphere and Interior, Cox, A.N. (ed.), Univ. of Arizona Press, Tucson

    Google Scholar 

  • Dziembowksi, W.A., Goode, P.R., Libbrecht, K.G. (1989): Astrophys. J. 337, L53

    Article  Google Scholar 

  • Elstner, D., Rüdiger, G. (1993): “Stellar dynamos with anisotropic α-tensor”, Krause, F., Rädler, K.-H., Rudiger, G. (eds)., The Cosmic Dynamo, IAU-Symp. 157, in press

    Google Scholar 

  • Ferrière, K. (1993): Astrophys. J. 404, 162

    Article  Google Scholar 

  • Ferriz-Mas, A., Schüssler, M. (1993a): “Instabilites of magnetic flux tubes in a stellar convection zone. I: Toroidal flux tubes in differentially roatating stars”, Geophys. Astrophys. Fluid Dyn., in press

    Google Scholar 

  • Ferrix-Mas, A., Schüssler, M. (1993b): “Instabilites of magnetic flux tubes in a stellar convection zone. II: Flux rings outside the equatorial plane”, preprint

    Google Scholar 

  • Ferriz-Mas, A., Schmitt, D., Schüssler, M. (1993): “A dynamo effect due to instabilities of magnetic flux tubes”, Astron. Astrophys., submitted

    Google Scholar 

  • Galloway, D.J., Weiss, N.O. (1981): Astrophys. J. 243, 945

    Article  Google Scholar 

  • Glatzmaier, G.A. (1985): Astrophys. J. 291, 300

    Article  Google Scholar 

  • Gokhale, M.H., Javaraiah, J., Narayanan Kutty, K., Varghese, B.A. (1992): Solar Phys. 138, 35

    Article  Google Scholar 

  • Hale, G.E. (1908): Astrophys. J. 28, 315

    Article  Google Scholar 

  • Hale, G.E. (1924): Nature 113, 105

    Google Scholar 

  • Hoyng, P. (1987): Astron. Astrophys. 171, 348 and 357

    Google Scholar 

  • Hoyng, P. (1988): Astrophys. J. 332, 857

    Article  Google Scholar 

  • Hoyng, P. (1993): Astron. Astrophys. 272, 321

    Google Scholar 

  • Hoyng, P., Schmitt, D., Teuben, L.J.W. (1993): “The effect of random a-fluctuations and the global properties of the solar magnetic field”, Astron. Astrophys., submitted

    Google Scholar 

  • Hughes, D.W. (1991): “Magnetic Buoyancy”, in Advances in Solar System Magnetohydrodynamics, Priest, E.R., Wood, A.W. (eds.), Cambridge University Press, p. 77

    Google Scholar 

  • Köhler, H. (1973): Astron. Astrophys. 25, 467

    Google Scholar 

  • Krause, F., Radler, K.-H. (1980): Mean-Field Magnetohydrodynmics and Dynamo Theory, Pergamon Press, Oxford

    Google Scholar 

  • Larmor, J. (1919): Rep. Brit. Assoc. Adv. Sc., 159

    Google Scholar 

  • Maunder, W. (1922): Mon. Not. R. Astron. Soc. 82, 534

    Google Scholar 

  • Moffatt, H.K. (1978): Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press

    Google Scholar 

  • Moreno-Insertis, F. (1986): Astron. Astrophys. 166, 291

    Google Scholar 

  • Moreno-Insertis, F. (1992): “The motion of magnetic flux tubes in the convection zone and the subsurface origin of active regions”, in Sunspots, Theory and Oberservations, Thomas, J.H., Weiss, N.O. (eds.), Kluwer, Dordrecht, p. 385

    Google Scholar 

  • Moreno-Insertis, F., Ferriz-Mas, A., Schussler, M. (1992): Astron. Astrophys. 264, 686

    Google Scholar 

  • Nordlund, A., Brandburg, A., Jennings, R.L., Rieutord, M., Ruokolainen, J., Stein, R.F., Tuominen, I. (1992): Astrophys. J. 392, 647

    Article  Google Scholar 

  • Parker, E.N. (1955): Astrophys. J. 122, 293

    Article  Google Scholar 

  • Parker, E.N. (1975): Astrophys. J. 198, 205

    Article  Google Scholar 

  • Parker, E.N. (1979): Cosmical Magnetic Fields, Clarendon Press, Oxford

    Google Scholar 

  • Parker, E.N. (1993): Astrophys. J. 408, 707

    Article  Google Scholar 

  • Pidatella, R.M., Stix, M. (1986): Astron. Astrophys. 157, 338

    Google Scholar 

  • Prautzsch, T. (1993): “The Dynamo Mechanism in the Deep Convection Zone of the Sun”, in NATO ASI Theory of Solar and Planetary Dynamos, Proceedings of the Isaac Newton Institute, Cambridge

    Google Scholar 

  • Prautzsch, T., Schmitt, D., Schüssler, M (1993): “Non-linear dynamos. 11. Two-dimensional model of an overshoot layer dynamo”, in preparation

    Google Scholar 

  • Proctor, M.R.E., Weiss, N.O. (1982): Rep. Prog. Phys. 45, 1317

    Article  Google Scholar 

  • Radler, K.-H. (1986): “On the effect of differential rotation on axisymmetric and nonaxisymmetric magnetic field of cosmical bodies”, in Plasma-Astrophysics, ESA SP-251, p. 569

    Google Scholar 

  • Radler, K.-H. (1990): “The Solar Dynamo”, in Inside the Sun, Berthomieu G., Cribier M. (eds.), Kluwer, Dordrecht, IAU-Cold. 121, 385

    Google Scholar 

  • Roberts, P.H. (1972): Phil. Trans. R. Soc. London A272, 663

    Google Scholar 

  • Rudiger, G. (1980): Astron. Nachr. 301, 181

    Google Scholar 

  • Rudiger, G., Kichatinov, L.L. (1993): Astron. Astrophys. 269, 581

    Google Scholar 

  • Schmitt, D. (1984): “Dynamo Action of Magnetostrophic Waves”, in The Hydromagneties of the Sun, Guyenne, T.D., Hunt, J.J. (eds.), ESA SP-220, 223

    Google Scholar 

  • Schmitt, D. (1985): “Dynamowirkung magnetostrophischer Wellen”, Thesis, Universität Göttingen

    Google Scholar 

  • Schmitt, D. (1987): Astron. Astrophys. 174, 281

    Google Scholar 

  • Schmitt, D. (1993): “The Solar Dynamo”, in The Cosmic Dynamo, Krause, F., Radler, K.-H., Rudiger, G. (eds)., IAU-Symp. 157, in press

    Google Scholar 

  • Schmitt, J.H.M.M., Rosner, R., Bohn, H.U. (1984): Astrophys. J. 282, 316

    Article  Google Scholar 

  • Schou, J., Christensen-Dalsgaard, J., Thompson, M.J. (1992): Astrophys. J. 385, L59

    Article  Google Scholar 

  • Schussler, M. (1980): Nature 288, 150

    Article  Google Scholar 

  • Schössler, M. (1983): “Stellar Dynamo Theory”, in Solar and Stellar Magnetic Fields: Origins and Coronal Effects, Stenflo, J.O. (ed.), IAU-Symp. 102, 213

    Google Scholar 

  • Schussler, M. (1984): “On the Structure of Magnetic Fields in the Solar Convection Zone”, in The Hydromagnetics of the Sun Guyenne, T.D., Hunt, J.J. (eds.), ESA SP-220, 67

    Google Scholar 

  • Schüssler, M. (1993): “Flux Tubes and Dynamos”, in The Cosmic Dynamo, Krause, F., Rädler, K.-H., Rudiger, G. (eds)., IA U-Symp. 157, in press

    Google Scholar 

  • Schwabe, H. (1844): Astron. Nachr. 21, 233

    Google Scholar 

  • Skaley, D., Stix, M. (1991): Astron. Astrophys. 241, 227

    Google Scholar 

  • Spiegel, E.A., Weiss, N.O. (1980): Nature 287, 616

    Article  Google Scholar 

  • Steenbeck, M., Krause, F. (1969): Astron. Nachr. 291, 49

    Google Scholar 

  • Steenbeck, M., Krause, F., Radler, K.-H. (1966): Z. Naturforsch. 21a, 369

    Google Scholar 

  • Stenflo, J.O. (1988): Astrophys. Space Sci. 144, 321

    Google Scholar 

  • Stenflo, J.O. (1989): Astron. Astrophys. Rev. 1, 3

    Article  Google Scholar 

  • Stix, M. (1976): Astron. Astrophys. 47, 243

    Google Scholar 

  • Stix, M. (1987): “On the Origin of Stellar Magnetism”, in Solar and Stellar Physics, Schröter, E.-H., Schüssler, M. (eds.), Lecture Notes in Physics 292, 15

    Google Scholar 

  • Stix, M. (1989): The Sun, Art Introduction, Springer, Berlin

    Google Scholar 

  • Stix, M. (1991): Geophys. Astrophys. Fluid Dyn. 62, 211

    Google Scholar 

  • Vainshtein, S.I., Cattaneo, F. (1992): Astrophys. J. 393, 165

    Article  Google Scholar 

  • van Ballegooijen, A.A. (1982): Astron. Astrophys. 113, 99

    Google Scholar 

  • Vizoso, G., Ballester, J.L. (1990): Astron. Astrophys. 229, 540

    Google Scholar 

  • Wälder, M., Deinzer, W., Stix, M. (1980): J. Fluid Mech. 96, 207

    Google Scholar 

  • Weisshaar, E. (1982): Geophys. Astrophys. Fluid Dyn. 21, 285

    Google Scholar 

  • Whight, O.R., Trotter, D.E. (1977): Astrophys. J. Suppl. 33, 391

    Article  Google Scholar 

  • Yoshimura, H. (1972): Astrophys. J. 178, 863

    Article  Google Scholar 

  • Yoshimura, H. (1975): Astrophys. J. 201, 740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Belvedere M. Rodonò G. M. Simnett

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Schmitt, D. (1994). Mean-field theory of the solar dynamo. In: Belvedere, G., Rodonò, M., Simnett, G.M. (eds) Advances in Solar Physics. Lecture Notes in Physics, vol 432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58041-7_202

Download citation

  • DOI: https://doi.org/10.1007/3-540-58041-7_202

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58041-6

  • Online ISBN: 978-3-540-48420-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics