Waiting time distributions for processor sharing queues with state-dependent arrival and service rates

  • Jens Braband
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 794)


Several variants of multiple server queues with Poisson input, exponentially distributed service demands and processor sharing discipline are considered, in which the arrival rate and the service capacity may depend on the actual number of customers in the system. These queues are approximated by a sequence of models featuring a new natural discipline called Random Quantum Allocation (RQA) operating in discrete time. This approach can be used for the numerical approximation of waiting and response time distributions for processor sharing queues. Numerical examples are provided for open and closed M/M/N processor sharing queues. In particular the effect of the number of parallel processors on the response time distribution under the condition of fixed total service capacity is discussed.


Processor sharing multiple server queues waiting time distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Abate and W. Whitt. The Fourier series method for inverting transforms of probability distributions. Queueing Systems, 10:5–88, 1992.Google Scholar
  2. [2]
    B. Avi-Itzhak and S. Halfin. Response times in M/M/1 time-sharing schemes with limited number of service positions. J. Appl. Probab., 25:579–595, 1988.Google Scholar
  3. [3]
    B. Avi-Itzhak and S. Halfin. Response times in gated M/G/1 queues: The processor-sharing case. Queueing Systems, 4:263–269, 1989.Google Scholar
  4. [4]
    J. Braband. Waiting time distributions for M/M/N processor sharing queues. Preprint, Technische Universität Braunschweig, Braunschweig, 1992. Submitted to Stochastic Models.Google Scholar
  5. [5]
    J. Braband. Wartezeitverteilungen für M/M/N-Processor-Sharing-Modelle. Dissertation, Technische Universität Braunschweig, Braunschweig, 1992. (in german).Google Scholar
  6. [6]
    J. Braband and R. Schaßberger. Random quantum allocation: A natural approach to M/M/N processor sharing queues. In B. Walke and O. Spaniol, editors, Messung, Modellierung und Bewertung von Rechen-und Kommunikationssystemen, 130–142, Berlin, 1993. 7. ITG/GI Fachtagung, Springer Verlag.Google Scholar
  7. [7]
    E. G. Coffman, R. Muntz, and H. Trotter. Waiting time distributions for processor-sharing systems. J. Ass. Comp. Mach., 17:123–130, 1970.Google Scholar
  8. [8]
    C. Knessl, B. J. Matkowsky, Z. Schuss, and C. Tier. Response times in processorshared queues with state-dependent arrival rates. Stochastic Models, 5:83–113, 1989.Google Scholar
  9. [9]
    D. Mitra. Waiting time distributions from closed queueing network models of shared-processor systems. In F. J. Kylstra, editor, Performance '81, pages 113–131, Amsterdam, 1981. North Holland.Google Scholar
  10. [10]
    J. A. Morrison. Conditioned response-time distribution for a large closed processor-sharing system in very heavy usage. SIAM J. Appl. Math., 47:1117–1129, 1987.Google Scholar
  11. [11]
    J. A. Morrison. Head of the line processor sharing for many symmetric queues with finite capacity. Technical report, AT&T Bell Laboratories, Murray Hill, NJ 07974, 1992.Google Scholar
  12. [12]
    J. A. Morrisson. Response time distribution for a processor-sharing system. SIAM J. Appl. Math., 45:152–167, 1985.Google Scholar
  13. [13]
    K. M. Rege and B. Sengupta. Soujourn time distributions in a multiprogrammed computer system. AT&T Techn. J., 64:1077–1090, 1985.Google Scholar
  14. [14]
    K. M. Rege and B. Sengupta. A single server queue with gated processor-sharing discipline. Queueing Systems, 4:249–261, 1989.Google Scholar
  15. [15]
    R. Schaßberger. A new approach to the M/G/1 processor sharing queue. Adv. Appl. Prob., 16:202–213, 1984.Google Scholar
  16. [16]
    S. F. Yashkov. Processor-sharing queues: Some progress in analysis. Queueing Systems, 2:1–17, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Jens Braband
    • 1
  1. 1.Institut für Mathematische StochastikTechnische Universität BraunschweigDeutschland

Personalised recommendations