Analytical methods for uncalibrated stereo and motion reconstruction

  • Jean Ponce
  • David H. Marimont
  • Todd A. Cass
Calibration and Multiple Views
Part of the Lecture Notes in Computer Science book series (LNCS, volume 800)


We present a new approach to relative stereo and motion reconstruction from a discrete set of point correspondences in completely uncalibrated pairs of images. This approach also yields new projective invariants, and we present some applications to object recognition. Finally, we introduce a new approach to camera self-calibration from two images which allows full metric reconstruction up to some unknown scale factor. We have implemented the proposed methods and present examples using real images.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Boufama, R. Mohr, and F. Veillon. Euclidean constraints for uncalibrated reconstruction. In Proc. Int. Conf. Comp. Vision, pages 466–470, 1993.Google Scholar
  2. 2.
    J.B. Burns, R.S. Weiss, and E.M. Riseman. The non-existence of general-case view-invariants. In J. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision, pages 120–131. MIT Press, 1992.Google Scholar
  3. 3.
    O.D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In Proc. European Conf. Comp. Vision, pages 563–578, 1992.Google Scholar
  4. 4.
    O.D. Faugeras, Q.-T. Luong, and S.J. Maybank. Camera self-calibration: theory and experiments. In Proc. European Conf. Comp. Vision, pages 321–334, 1992.Google Scholar
  5. 5.
    O.D. Faugeras and S.J. Maybank. A theory of self-calibration of a moving camera. Int. J. of Comp. Vision, 8(2):123–151, 1992.Google Scholar
  6. 6.
    P. Gros and L. Quan. Projective invariants for vision. Technical Report RT 90-IMAG 15-LIFIA, LIFIA-IRIMAG, 1992.Google Scholar
  7. 7.
    R.I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In Proc. European Conf. Comp. Vision, pages 579–587, 1992.Google Scholar
  8. 8.
    R.I. Hartley. Cheirality invariants. In Proc. DARPA Image Understanding Workshop, pages 745–753, 1993.Google Scholar
  9. 9.
    R.I. Hartley. Invariants of points seen in multiple images. IEEE Trans. Patt. Anal. Mach. Intell., 1994. In Press.Google Scholar
  10. 10.
    R.I. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 761–764, 1992.Google Scholar
  11. 11.
    R. Mohr, L. Morin, and E. Grosso. Relative positioning with uncalibrated cameras. In J. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision, pages 440–460. MIT Press, 1992.Google Scholar
  12. 12.
    J. Ponce, T.A. Cass, and D.H. Marimont. Relative stereo and motion reconstruction. Tech. Rep. AI-RCV-93-07, Beckman Institute, Univ. of Illinois, 1993.Google Scholar
  13. 13.
    J.A. Todd. Projective and Analytical Geometry. Pitman Publishing Corp., 1946.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Jean Ponce
    • 1
  • David H. Marimont
    • 2
  • Todd A. Cass
    • 2
  1. 1.Department of Computer ScienceUniversity of IllinoisUrbana
  2. 2.Xerox Palo Alto Research CenterPalo Alto

Personalised recommendations