Constructive problems for irreducible polynomials over finite fields

  • Ian F. Blake
  • Shuhong Gao
  • Robert Lambert
Coding and Cryptography
Part of the Lecture Notes in Computer Science book series (LNCS, volume 793)


This paper discusses the techniques used in searching for irreducible trinomials in finite fields. We first collect some specific constructions of irreducible trinomials, then we show how to get new irreducible trinomials from given ones. We also make some comments on the irreducibility testing algorithms and on a primitivity testing algorithm although no experimantal results on primitive polynomials are reported on. Finally, updated tables of irreducible trinomials over F2 are included.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.F. Blake, S. Gao and R.C. Mullin, “Explicit factorization of \(x^{2^k } + 1\) over F p with prime p≡3 mod 4”, AAECC, 4 (1993), pp. 89–94.Google Scholar
  2. 2.
    J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman and S.S. Wagstaff, “Factorizations of b n±1, b=2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers”, Vol. 22 of Contemporary Mathematics, AMS, 1988, 2nd edition.Google Scholar
  3. 3.
    L. Carlitz, “Factorization of a special polynomial over a finite field”, Pac. J. Math., 32 (1970) pp. 603–614.Google Scholar
  4. 4.
    S. Chowla, “A note on the construction of finite Galois fields GF(p n)”, J. Math. Anal. Appl., 15 (1966), pp. 53–54. in 335–344.Google Scholar
  5. 5.
    S.D. Cohen, “The distribution of polynomials over finite fields”, Acta Arith., 17 1970, pp. 255–271.Google Scholar
  6. 6.
    H. Fredricksen and R. Wisniewski, “On trinomials x n +x 2+1 and x 81±3 +x k+1 irreducible over GF(2)”, Information and Control, 50 (1981) pp. 58–63.Google Scholar
  7. 7.
    J. von zur Gathen and V. Shoup, “Computing Frobenius maps and factoring polynomials”, Computational Complexity, 2 (1992), pp. 187–224.Google Scholar
  8. 8.
    S.W. Golomb, Shift Register Sequences, Holden-Day Inc., 1967.Google Scholar
  9. 9.
    T. Hansen and G.L. Mullen, “Primitive polynomials over finite fields”, Math. Comp., 59 (1992) 639–643.Google Scholar
  10. 10.
    J.R. Heringa, H.W.J. BlŐte and A, Compagner, “New primitive trinomials of Mersenneexponent degrees for random-number generation”, Int'l J. Modern Physics C, 3 (1992) 561–564.Google Scholar
  11. 11.
    H.W. Lenstra and R.J. Schoof, “Primitive normal bases for finite fields”, Math. Comp., 48 (1987) pp. 217–231.Google Scholar
  12. 12.
    R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1987.Google Scholar
  13. 13.
    R.W. Marsh, W.H. Mills, R.L. Ward, H. Rumsey Jr. and L.R. Welch, “Round trinomials”, Pac. J. Math., 96 (1981) pp. 175–192. self-reciprocal 43–53.Google Scholar
  14. 14.
    W.H. Mills, “The degrees of the factors of certain polynomials over finite fields”, Proc. Amer. Math. Soc., 25 (1970) pp. 860–863.Google Scholar
  15. 15.
    W.H. Mills and N. Zierler, “On a conjecture of Golomb”, Pac. J. Math., 28 (1969) pp. 635–640.Google Scholar
  16. 16.
    A.J. Menezes, editor, Applications of Finite fields, Kluwer Academic Publishers, 1993.Google Scholar
  17. 17.
    A. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Proc. Eurocrypt '84, pp. 224–314.Google Scholar
  18. 18.
    A. Odlyzko, Asymptotic enumeration methods, manuscript, 1993.Google Scholar
  19. 19.
    R. Ree, “Proof of a conjecture of S. Chowla”, J. of Number Theory, 3 (1971), pp. 210–212.Google Scholar
  20. 20.
    E.R. Rodemich and H. Rumsey Jr., “Primitive polynomials of high degree”, Math. Comp., 22 (1968) pp.863–865.Google Scholar
  21. 21.
    V. Shoup, “Searching for primitive roots in finite fields”, Math. Comp., 58 (1992), pp. 369–380.Google Scholar
  22. 22.
    I.E. Shparlinskii, “On some problems in the theory of finite fields”, Russian Math. Surveys, 46 (1991), pp. 199–240; or Uspekhi Mat. Nauk, 46 (1991), pp. 165–200.Google Scholar
  23. 23.
    R.G. Swan, “Factorization of polynomials over finite fields”. Pac. J. Math., 12 (1962) 1099–1106.Google Scholar
  24. 24.
    N. Zierler and J. Brillhart, “On primitive trinomials (Mod 2)”, Information and Control, 13 (1968) pp. 541–554.CrossRefGoogle Scholar
  25. 25.
    N. Zierler and J. Brillhart, “On primitive trinomials(Mod 2), II”, Information and Control, 14 (1969) pp. 566–569.CrossRefGoogle Scholar
  26. 26.
    N. Zierler, “On x n+x+1 over GF(2)”, Information and Control, 16 (1970) pp. 502–505.CrossRefGoogle Scholar
  27. 27.
    N. Zierler, “Primitive trinomials whose degree is a Mersenne exponent”, Information and Control, 15 (1969) pp. 67–69.CrossRefGoogle Scholar
  28. 28.
    N. Zierler, “On the theorem of Gleason and Marsh”, Proc. Amer. Math. Soc., 9 (1958), pp. 236–237.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ian F. Blake
    • 1
  • Shuhong Gao
    • 1
  • Robert Lambert
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations