Linear layouts of generalized hypercubes

  • Koji Nakano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 790)


This paper studies linear layouts of generalized hypercubes, a d-dimensional c-ary clique and a d-dimensional c-ary array, and evaluates the bisection width, cut width, and total edge length of them, which are important parameters to measure the complexity of them in terms of a linear layout.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus structures for a computer network. IEEE Transactions on Computers, C-33(4), April 1984.Google Scholar
  2. 2.
    G. Brebner. Relating routing and two-dimensinal grids. In P. Bertolazii and F. Luccio, editors, VLSI: Algorithms and Architectures, pages 221–231. Elsevier Science Publishers B.V.(North-Holland), 1985.Google Scholar
  3. 3.
    R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton. Preserving average proximity in arrays. Communications of the ACM, 21(3):228–231, March 1978.Google Scholar
  4. 4.
    M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified polynomial complete problems. SIGACT, pages 47–63, 1974.Google Scholar
  5. 5.
    L. H. Harper. Optimal assignments of numbers to vertices. J. Soc. Indust. Appl. Math, 12(1):131–135, March 1964.Google Scholar
  6. 6.
    F. T. Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other Networks. MIT Press, 1983.Google Scholar
  7. 7.
    F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays · Trees · Hypercubes. Morgan Kaufmann, 1992.Google Scholar
  8. 8.
    F. Makedon and I. H. Subdorough. On minimizing width in linear layouts. Discrete Applied Mathematics, 23:243–265, 1989.Google Scholar
  9. 9.
    Y. Manabe, K. Hagihara, and N. Tokura. The minimum bisection widths of the cube-connected-cycles graph and cube graph. Trans. IEICE(D) Japan, J76-D(6):647–654, June 1984. in Japanese.Google Scholar
  10. 10.
    K. Nakano, W. Chen, T. Masuzawa, K. Hagihara, and N. Tokura. Cut width and bisection width of hypercube graph. IEICE Transactions, J73-A(4):856–862, April 1990. in Japanese.Google Scholar
  11. 11.
    L. Niepel and P. Tomasta. Elevation of a graph. Czechoslovak Mathematical Journal, 31(106):475–483, 1981.Google Scholar
  12. 12.
    A. L. Rosenberg. Preserving proximity in arrays. SIAM J. Comput., 4(4):443–460, December 1975.Google Scholar
  13. 13.
    C. D. Thompson. Area-time complexity for VLSI. In Proc. of 11th Symposium on Theory of Computing, pages 81–88. ACM, 1979.Google Scholar
  14. 14.
    K. Wada and K. Kawaguchi. Optimal bounds of the crossing number and the bisection width for generalized hypercube graphs. In Proc. of 16th Biennial Symposium on Communications, pages 323–326, May 1992.Google Scholar
  15. 15.
    K. Wada, H. Suzuki, and K. Kawaguchi. The crossing number of hypercube graphs. In Proc. of 43rd Convention of IPS Japan, pages 1–95, 1991. in Japanese.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Koji Nakano
    • 1
  1. 1.Advanced Research LaboratoryHitachi, Ltd.SaitamaJapan

Personalised recommendations