Advertisement

Deciding 3-colourability in less than O(1.415n) steps

  • Ingo Schiermeyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 790)

Abstract

In this paper we describe and analyze an improved algorithm for deciding the 3-Colourability problem. If G is a simple graph on n vertices then we will show that this algorithm tests a graph for 3-Colourability, i.e. an assignment of three colours to the vertices of G such that two adjacent vertices obtain different colours, in less than O(1.415n) steps.

Key words

Graph algorithm k-colouring complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).Google Scholar
  2. [2]
    N. Christofides, An Algorithm for the Chromatic Number of a Graph, Computer J. 14(1971)38–39.Google Scholar
  3. [3]
    M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of N P-Completeness, W. H. Freeman and Company, New York, 1979.Google Scholar
  4. [4]
    M. R. Garey and D. S. Johnson, The complexity of Near-Optimal Graph Coloring, J. ACM 23 (1976) 43–49.Google Scholar
  5. [5]
    D. S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. of Alg. 13 (1992) 502–524.Google Scholar
  6. [6]
    E. L. Lawler, A Note on the Complexity of the Chromatic Number Problem, Inform. Process. Lett. 5 (1976) 66–67.Google Scholar
  7. [7]
    J. W. Moon and L. Moser, On Cliques in Graphs, Israel J. of Math. 3 (1965) 23–28.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ingo Schiermeyer
    • 1
  1. 1.Lehrstuhl C für MathematikTechnische Hochschule AachenAachenGermany

Personalised recommendations