Deciding 3-colourability in less than O(1.415n) steps

  • Ingo Schiermeyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 790)


In this paper we describe and analyze an improved algorithm for deciding the 3-Colourability problem. If G is a simple graph on n vertices then we will show that this algorithm tests a graph for 3-Colourability, i.e. an assignment of three colours to the vertices of G such that two adjacent vertices obtain different colours, in less than O(1.415n) steps.

Key words

Graph algorithm k-colouring complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).Google Scholar
  2. [2]
    N. Christofides, An Algorithm for the Chromatic Number of a Graph, Computer J. 14(1971)38–39.Google Scholar
  3. [3]
    M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of N P-Completeness, W. H. Freeman and Company, New York, 1979.Google Scholar
  4. [4]
    M. R. Garey and D. S. Johnson, The complexity of Near-Optimal Graph Coloring, J. ACM 23 (1976) 43–49.Google Scholar
  5. [5]
    D. S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. of Alg. 13 (1992) 502–524.Google Scholar
  6. [6]
    E. L. Lawler, A Note on the Complexity of the Chromatic Number Problem, Inform. Process. Lett. 5 (1976) 66–67.Google Scholar
  7. [7]
    J. W. Moon and L. Moser, On Cliques in Graphs, Israel J. of Math. 3 (1965) 23–28.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ingo Schiermeyer
    • 1
  1. 1.Lehrstuhl C für MathematikTechnische Hochschule AachenAachenGermany

Personalised recommendations